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Abstract: This electroencephalographic (EEG) study tested whether cortical EEG rhythms (especially delta
and alpha) show a progressive increasing or decreasing trend across physiological aging. To this aim, we
analyzed the type of correlation (linear and nonlinear) between cortical EEG rhythms and age. Resting
eyes-closed EEG data were recorded in 108 young (Nyoung; age range: 18–50 years, mean age 27.3 � 7.3
SD) and 107 elderly (Nold; age range: 51–85 years, mean age 67.3 � 9.2 SD) subjects. The EEG rhythms
of interest were delta (2–4 Hz), theta (4–8 Hz), alpha 1 (8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20
Hz), and beta 2 (20–30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic
tomography (LORETA). Statistical results showed that delta sources in the occipital area had significantly
less magnitude in Nold compared to Nyoung subjects. Similarly, alpha 1 and alpha 2 sources in the
parietal, occipital, temporal, and limbic areas had significantly less magnitude in Nold compared to
Nyoung subjects. These nine EEG sources were given as input for evaluating the type (linear, exponential,
logarithmic, and power) of correlation with age. When subjects were considered as a single group there
was a significant linear correlation of age with the magnitude of delta sources in the occipital area and of
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alpha 1 sources in occipital and limbic areas. The same was true for alpha 2 sources in the parietal,
occipital, temporal, and limbic areas. In general, the EEG sources showing significant linear correlation
with age also supported a nonlinear correlation with age. These results suggest that the occipital delta and
posterior cortical alpha rhythms decrease in magnitude during physiological aging with both linear and
nonlinear trends. In conclusion, this new methodological approach holds promise for the prediction of
dementia in mild cognitive impairment by regional source rather than surface EEG data and by both linear
and nonlinear predictors. Hum Brain Mapp 27:162–172, 2006. © 2006 Wiley-Liss, Inc.

Key words: physiological aging; electroencephalography (EEG); alpha rhythm; low resolution brain
electromagnetic tomography (LORETA)
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INTRODUCTION

Quantitative analysis of electroencephalography (EEG) is
a low-cost and useful neurophysiological approach to the
study of physiological and pathological aging. Previous
studies have shown that physiological aging in adults is
associated not only with variations of scalp-evoked poten-
tials [Yordanova et al., 1996, 1998, 2004], but also with grad-
ual changes in the power of electroencephalographic (EEG)
rhythms at rest [Christian, 1984; Marthis et al., 1980; Nied-
ermeyer, 1993a–c; Obrist, 1954; Van Sweden, 1993; Wieneke
et al., 1980].

Most studies have shown global “slowing” of EEG
rhythms, pronounced power increase in the slow frequency
ranges including delta (2–4 Hz) and theta (4–8 Hz) bands,
and power decrease in the higher frequency range including
alpha (8–12 Hz) and beta (�14 Hz) bands [Celesia, 1986;
Christian, 1984; Ehlers and Kupfer, 1989; Klass and Brenner,
1995; Marsh and Thompson, 1977; Markand, 1990; Obrist,
1954, 1963]. However, changes in the low-frequency EEG
power might depend on the cognitive status of the subjects
selected as normals. A previous study reported an inverse
correlation between delta/theta power and age in normal
adults selected to exclude persons with slight cognitive def-
icits [Hartikainen et al., 1992].

Despite extensive previous evidence, the precise relation-
ship between age and slowing of EEG rhythms is still a
matter of debate, due to inconsistent study findings [Duffy
et al., 1984; Giaquinto and Nolfe, 1986; Katz and Horowitz,
1982; Pollock et al., 1990]. In this framework, a previous
study has shown that such a relationship might be strongly
nonlinear at least for the alpha band [Senant et al., 1986]. In
that study, a decrease of the alpha power from 20 to about 50
years of age and, surprisingly, an increase after 60 years was
observed [Senant et al., 1986]. Discrepancies in the results of
previous studies might be due to different methodological
approaches including use of absolute vs. relative EEG power
analysis, electrode references, and frequency band selection
[Klimesch, 1999].

From a physiological point of view, EEG rhythms reflect
opening-closure (“gating function”) of functional bidirec-
tional connections among several cortical and subcortical
(i.e., brainstem, thalamus) structures [Hari et al., 1997;
Nunez, 1995; Pfurtscheller and Neuper, 1994; Pfurtscheller

and Lopes da Silva, 1999]. These rhythms can be considered
global functional indices of brain activity. Analysis of EEG
rhythms across physiological and pathological aging might
unveil fine relationships between age and modulation of the
information flow among cortical and subcortical pathways.

In the present EEG study we tested whether cortical EEG
rhythms (especially delta and alpha) show a progressive
increasing or decreasing trend with physiological aging. To
this aim, we analyzed the type of correlation (linear and/or
nonlinear) between cortical EEG rhythms and age. Resting
EEG data were recorded in a large population of 215 normal
subjects ranging in age from 18–85 years. EEG rhythms
were evaluated in selected bands from delta to beta. Cortical
sources of the EEG rhythms were estimated by low-resolu-
tion brain electromagnetic tomography (LORETA) [Pascual-
Marqui et al., 1994, 1999, 2002]. LORETA is a functional
imaging technique estimating maximally smoothed linear
inverse solutions accounting for distributed EEG sources
within Talairach space [Pascual-Marqui et al., 2002]. This
feature is of special importance for the comparison of EEG
results with those of most structural and functional neuro-
imaging studies on elderly subjects. LORETA has been suc-
cessfully used in recent EEG studies on pathological aging
[Babiloni et al., 2004; Dierks et al., 2000].

SUBJECTS AND METHODS

Part of the procedures (EEG recordings and LORETA
analysis) pertinent to the current study, as well as a descrip-
tion of the potential meaning of cortical rhythms in aging,
have been extensively described recently [Babiloni et al.,
2004]. However, it should be stressed that the aims of the
previous and current studies are totally different. The pre-
vious study aimed at analyzing (1) the distributed EEG
sources specific to mild Alzheimer’s disease (AD) as com-
pared to vascular dementia (VaD) or normal aging; and (2)
the sensitivity of these sources to disease severity. In con-
trast, the current study focused on the distributed EEG
sources across physiological aging, namely, in healthy
young vs. healthy elderly subjects.

Subjects

For the present Italian multicenter EEG study, 108 young
(Nyoung; age range: 18–50 years, mean age 27.3 � 7.3 SD)
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and 107 elderly (Nold; age range: 51–85 years, mean age 67.3
� 9.2 SD) subjects were enrolled. Local institutional ethics
committees approved the study. All experiments were per-
formed with the informed and overt consent of each partic-
ipant or caregiver, in line with the Code of Ethics of the
World Medical Association (Declaration of Helsinki) and the
standards established by the authors’ Institutional Review
Board.

Inclusion/Exclusion Criteria

All Nold subjects underwent general medical, neurologi-
cal, and psychiatric assessments. Standardized diagnostic
assessment included the Mini-Mental State Evaluation
[MMSE; Folstein et al., 1975], the Clinical Dementia Rating
Scale [CDR; Hughes et al., 1982], the Geriatric Depression
Scale [GDS; Yesavage. 1983], the Hachinski Ischemic Scale
[HIS; Rosen et al., 1980], and the Instrumental Activities of
Daily Living Scale [IADL; Lawton and Brodie, 1969]. All
Nold subjects had MMSE scores greater than 27 and GDS
scores lower than 14. Neuroimaging diagnostic procedures
(CT or MRI) and complete laboratory testing were carried
out to exclude subjects with AD, frontotemporal dementia,
vascular dementia, and pseudo-depressive dementia. Ab-
sence of AD was defined according to NINCDS-ADRDA
[McKhann et al., 1984] and DSM IV criteria.

Special attention was also devoted to exclude subjects
with mild cognitive impairment (MCI) based on previous
seminal studies [Albert et al., 1991; Devanand et al., 1997;
Flicker et al., 1991; Petersen et al., 1995, 1997, 1999, 2001;
Rubin et al., 1989; Zaudig, 1992]. The selected subjects pre-
sented no objective sign of cognitive deficits, especially in
the memory domain, as ascertained by neuropsychological
testing. Finally, subjects affected by chronic systemic ill-
nesses (i.e., diabetes mellitus or organ failure) were ex-
cluded, as were subjects with alcohol and drug dependence.

Table I reports the mean values of relevant parameters of
Nyoung and Nold subjects. Education was used as a covari-
ate in the statistical evaluation of cortical sources of EEG
rhythms to remove possible confounding effects.

EEG Recordings

EEGs were recorded in resting subjects (eyes-closed) by
specialized clinical units familiar with the issue of vigilance
in resting elderly subjects. In all subjects the state of vigi-
lance was controlled by visual inspection of EEG traces

during the recording session and subjects’ drowsiness was
avoided by verbal warnings. The EEG data were recorded
(0.3–70 Hz bandpass) from 19 electrodes positioned accord-
ing to the international 10–20 system (i.e., Fp1, Fp2, F7, F3,
Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2). A
specific kind of reference electrode was not used in all
recording units, since the present preliminary data analysis
and LORETA source analysis (reference free) were based on
common average reference. To monitor eye movements,
electrooculogram (0.3–70 Hz bandpass) was recorded. All
data were digitized in continuous recording mode (5 min of
EEG; 128–256 Hz sampling rate; the sampling rate was
constant in each research unit of the present multicentric
study).

Physical reference of the EEG recordings was re-refer-
enced off-line to common average. The EEG data were an-
alyzed and fragmented in consecutive epochs of 2 s. On
average, 137 epochs for each subject were examined. For
standardization purposes, the preliminary analysis of all
data was performed at the EEG laboratories of the Depart-
ment of Human Physiology and Pharmacology, University
of Rome La Sapienza. EEG epochs with ocular, muscular,
and other types of artifact were preliminarily identified by a
computerized automatic procedure and the EEG epochs
with ocular artifacts (�15% of the epochs) were corrected by
an autoregressive method [Moretti et al., 2003]. Two inde-
pendent experimenters visually confirmed the EEG seg-
ments accepted for further analysis.

Spectral Analysis of the EEG Data

A digital FFT-based power spectrum analysis (Welch
technique, Hanning windowing function, no phase shift)
computed the power density of EEG rhythms with 0.5 Hz
frequency resolution. The following standard band frequen-
cies were studied: delta (2–4 Hz), theta (4–8 Hz), alpha 1
(8–10.5 Hz), alpha 2 (10.5–13 Hz), beta 1 (13–20 Hz), and beta
2 (20–30 Hz). These band frequencies were chosen averag-
ing those used in previous relevant EEG studies on demen-
tia [Besthorn et al., 1997; Chiaramonti et al., 1997; Jelic et al.,
1996; Leuchter et al., 1993; Rodriguez et al., 1999a,b]. This
allowed better comparison of our results with the previous
literature on dementia but it did not account for individual
EEG markers such as the individual alpha and transition
frequencies [Klimesch, 1999]. However, it should be noted
that the present definition of alpha bands allowed the inclu-
sion of the alpha frequency peaks of the large majority of
both Nyoung and Nold subjects within the alpha 1 band
(8–10.5 Hz). The mean alpha frequency peak was in fact 10.3
Hz (�1 SD) in the Nyoung and 9.5 Hz (�1.2 SD) in the Nold
subjects. Moreover, in the evaluation of the EEG source
power density across aging, the individual alpha frequency
peak was used as a covariate [Klimesch, 1999].

Of note, we could not use narrower frequency bands for
beta 1 (13–20 Hz) and beta 2 (20–30 Hz) because of the
variability of beta peaks in the power spectra. The LORETA
results for the beta bands could therefore suffer from the

TABLE I. Anagraphic and neuropsychological data of
interest of the present normal young (Nyoung) and

normal elderly (Nold) subjects

Nyoung Nold

N 108 107
Age (yr), mean � SD 27.3 � 7.3 67.3 � 9.2
Gender (F/M) 56/52 67/40
MMSE 30 28.5 � 1.2
Education (yr), mean � SD 15.9 � 2.6 9.6 � 4.2
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sensitivity limitations of EEG spectral analyses for large
bands [Szava et al., 1994].

Cortical Source Analysis of the
EEG Rhythms by LORETA

As mentioned, the popular LORETA technique has been
previously used for EEG source analysis [Pascual-Marqui et
al., 1994, 1999, 2002]. LORETA computed 3D linear solutions
(LORETA solutions) for the EEG inverse problem within a
three-shell spherical head model including scalp, skull, and
brain compartments. The brain compartment was restricted
to the cortical gray matter/hippocampus and was coregis-
tered to the Talairach probability brain atlas, digitized at the
Brain Imaging Center of the Montreal Neurologic Institute
[Talairach and Tournoux, 1988]. This compartment included
2,394 voxels (7 mm resolution), each voxel containing an
equivalent current dipole.

LORETA source analysis is reference-free in that one ob-
tains the same LORETA source distribution for EEG data
referenced to any reference electrode including common
average. Furthermore, LORETA can be used from data col-
lected by low spatial sampling of the 10–20 system (19
electrodes) when cortical sources are estimated from resting
EEG rhythms. Several previous studies have shown that
these rhythms are generated by largely distributed cortical
sources that can be accurately investigated by the standard
10–20 system and LORETA [Anderer et al., 2000, 2003, 2004;
Babiloni et al., 2004; Cincotti et al., 2003b, 2004; Isotani et al.,
2001; Kawasaki et al., 2003; Laufer and Pratt, 2003a; Mulert
et al., 2001; Sinai and Pratt, 2003; Tanaka et al., 2003a; Veiga
et al., 2003; Winterer et al., 2001].

LORETA solutions consisted of voxel current density val-
ues able to predict EEG spectral power density at the scalp
electrodes. To enhance the topographical results, “spatial”
normalization was obtained by normalizing the LORETA
current density at each voxel for the LORETA power density
averaged across EEG frequencies and voxels of the brain
volume. The general procedure fitted the LORETA solutions
in a Gaussian distribution and reduced intersubject variabil-
ity [Leuchter et al., 1993; Nuwer, 1988]. Of note, other meth-
ods of normalization using the principal component analysis
are effective for estimating the subjective global factor scale
of the EEG data [Hernandez et al., 1994]. These methods are
not available yet in the LORETA package, so they were not
used here.

Solutions of the EEG inverse problem are underdeter-
mined and ill-conditioned when the number of spatial sam-
ples (electrodes) is lower than that of the unknown samples
(current density at each voxel). To account for that, the
cortical LORETA solutions predicting scalp EEG spectral
power density were regularized to estimate the distributed
rather than the punctual EEG sources [Pascual-Marqui et al.,
1994, 1999, 2002]. Such spatial smoothing of the LORETA
solutions (resolution in centimeters) could reliably take into
account the slight change in cortical volume (resolution in
millimeters) present in elderly subjects.

In line with the low spatial resolution of the LORETA
technique, we collapsed the LORETA solutions at frontal,
central, temporal, parietal, and occipital regions of the brain
model coded into Talairach space. The Brodmann areas
listed in Table II formed each of these regions of interests
(ROIs). Of note, the main advantage of the regional analysis
of LORETA solutions was that our modeling could disen-
tangle rhythms of contiguous cortical areas. For example,
the rhythms of the occipital source were disentangled with
respect to those of the contiguous parietal and temporal
sources, etc. This was made possible by the fact that
LORETA solves the linear inverse problem by taking into
account the well-known effects of the head as a volume
conductor. With respect to other procedures of data reduc-
tion, this type of lobar approach may represent an important
reference for multimodal comparisons with structural and
functional neuroimaging methods (SPECT, PET, surface
EEG/MEG topography). Finally, it can be stated that the
present approach represents a clear methodological im-
provement compared to surface electrodes EEG spectral
analyses. Indeed, the EEG potentials collected at each scalp
electrode are strongly affected by head volume conductor
effects. For example, occipital electrodes collect scalp poten-
tials generated not only from the occipital cortex but also
from parietal and temporal cortices due to head volume
conductor effects.

Statistical Analysis of the LORETA Solutions

Regional normalized LORETA solutions from the Nyoung
and Nold subjects were used as dependent variables for
analysis of variance (ANOVA) using subjects’ education and
individual alpha frequency peak [IAF; Klimesch, 1999] as
covariates. To test the working hypothesis, the ANOVA
factors (levels) were Group (Nyoung, Nold; between factor),
Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2), and ROI
(central, frontal, parietal, occipital, temporal, limbic).
Mauchly’s test evaluated the sphericity assumption. Correc-
tion of the degrees of freedom was made with the Green-
house-Geisser procedure. Tukey’s test was used for post-hoc
comparisons (P � 0.05). Post-hoc testing was planned in
order to focus on between-group but not on within-group
differences in magnitude of the LORETA solutions (i.e.,
Nyoung vs. Nold subjects). In this sense we accepted
ANOVA statistical differences that included the factor
group.

TABLE II. LORETA Brodmann areas in the regions of
interest (ROIs)

Frontal 8, 9, 10, 11, 44, 45, 46, 47
Central 1, 2, 3, 4, 6
Parietal 5, 7, 30, 39, 40, 43
Temporal 20, 21, 22, 37, 38, 41, 42
Occipital 17, 18, 19
Limbic 31, 32, 33, 34, 35, 36

LORETA solutions were collapsed in frontal, central, parietal, tem-
poral, occipital, and limbic ROIs.
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The LORETA solutions showing significant differences
between Nyoung and No1d subjects were evaluated as type
(linear and/or nonlinear) of correlation with age in all sub-
jects as a whole group. The linear correlation was computed
with the Pearson test (Bonferroni-corrected, P � 0.05). The
nonlinear correlations were computed evaluating the coef-
ficient of determination r2 for exponential, logarithmic, and
power functions. The r2 value was computed with the fol-
lowing mathematical formula:

r2 � 1 � �SSE/SST�

where:

SSE � ��yi � ¥i� and SST � ��yi
2� � ���yi�

2/n�

where n is the number of samples (i.e., subjects), yi is the real
value and ¥i is the approximated value calculated with the
following formula:

¥i � c ln xi � b for logarithmic functions �c, b constant�

¥i � c ei
bx for exponential functions �c, b constant�

¥i � c xi
b for power functions �c, b constant�

Finally, r2 of the nonlinear simple functions was compared
with r2 of the linear function, to evaluate the prevalence of
linear or nonlinear EEG correlations between regional
LORETA solutions and physiological aging.

RESULTS

Topography of the EEG Cortical Sources
Estimated by LORETA

Figure 1 maps the grand average of the LORETA solutions
(i.e., relative current density at cortical voxels) modeling the
distributed EEG sources for delta, theta, alpha 1, alpha 2,
beta 1, and beta 2 bands in the Nyoung and Nold groups.
The Nyoung group presented alpha 1 and alpha 2 sources
with maximal values of the relative current density distrib-
uted in the parieto-occipital regions. Delta and theta sources
had moderate relative current density values compared to
the alpha sources. Finally, beta 1 and beta 2 sources were
characterized by the lowest relative current density values.
Compared to the Nyoung group, the Nold group showed a
clear reduction of the relative current density of the delta
sources in occipital area and of the alpha 1 and alpha 2
sources in limbic, temporal, occipital, and parietal areas.

Statistical Analysis of the EEG Cortical Sources
Estimated by LORETA

Figure 2 shows the mean regional LORETA solutions
(distributed EEG sources) relative to a statistical ANOVA
interaction (F(25,5325) � 16.7; MSe � 0.814; P � 0.00001)

among the factors Group (Nyoung, Nold), Band (delta,
theta, alpha 1, alpha 2, beta 1, beta 2), and ROI (central,
frontal, parietal, occipital, temporal, limbic). In the figure,
the LORETA solutions had the shape of EEG relative power
spectra. Notably, profile and magnitude of these spectra in
the Nyoung and Nold groups differed in the diverse cortical
regions, thus supporting the idea that scalp EEG rhythms
are generated by a distributed pattern of cortical sources.
Tukey’s post-hoc test assessing the differences in the re-
gional LORETA solutions between Nyoung and Nold sub-
jects showed that delta sources in the occipital area showed
stronger amplitude in the Nyoung compared to the Nold
group (P � 0.04). Furthermore, alpha 1 and alpha 2 sources
in parietal, occipital, temporal, and limbic areas showed
stronger amplitude in the Nyoung compared to the Nold
group (P � 0.00003).

The nine cortical sources (current density values) discrim-
inating the two groups were used in linear correlation anal-
yses with age in the whole group of subjects (Pearson test;
Bonferroni correction for nine test repetitions gave a thresh-
old of P � 0.00556 to obtain the Bonferroni-corrected P
� 0.05). Figure 3 shows the scatterplots of the statistically
significant correlations between individual LORETA solu-
tions and age of the statistically significant correlations (un-
corrected P � 0.00556). Age correlated negatively with oc-
cipital delta sources (r � –0.25, uncorrected P � 0.0001) and
with occipital (r � –0.29, uncorrected P � 0.00001), and
limbic (r � –0.24, uncorrected P � 0.0003) alpha 1 sources.
Similarly, age correlated negatively with parietal (r � –0.31,
uncorrected P � 0.00001), occipital (r � –0.43, uncorrected P

Figure 1.
Grand average of LORETA solutions (i.e., normalized relative
current density at the cortical voxels) modeling the distributed
EEG sources for delta, theta, alpha 1, alpha 2, beta 1, and beta 2
bands in Nyoung and Nold groups. Left side of the maps (top view)
corresponds to the left hemisphere. LORETA, low-resolution
brain electromagnetic tomography. Color scale: all power esti-
mates were scaled based on the averaged maximum value (i.e.,
alpha 1 power value of occipital region in Nyoung). The maximal
value of power is reported under each column. [Color figure can
be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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� 0.000001), temporal (r � –0.28, uncorrected P � 0.00002),
and limbic (r � –0.38, uncorrected P � 0.000001) alpha 2
sources.

Table III reports the coefficient of the r2 determination
between individual regional LORETA solutions and age in
all Nyoung and Nold subjects considered as a single group.
Only the nine EEG sources showing statistically significant
differences between Nyoung and Nold groups were consid-
ered. The r2 value is reported for linear, exponential, loga-
rithmic, and power functions. In general, r2 values for linear,
exponential, logarithmic, and power functions were quite
similar. No clear predominance of nonlinear or linear values
was observed.

DISCUSSION

The aim of the present EEG study was to verify whether,
in normal subjects, EEG cortical rhythms (especially delta
and alpha) show a progressive increasing or decreasing
trend with age. To this aim we analyzed linear and nonlinear
correlations between EEG cortical sources and age. Nonlin-
ear functions included only simple functions such as loga-
rithmic, exponential, and power ones, since the scatterplot

distribution of the data discouraged complex nonlinear
functions such as polynomial ones.

The present results showed that physiological aging in
adults mainly induces a decrease in magnitude of delta (2–4
Hz) sources in occipital area and of low- (8–10.5 Hz) and
high-band (10.5–13 Hz) alpha sources in parietal, occipital,
temporal, and limbic areas. For the occipital delta source this
decrease linearly correlated with age. Similarly, for the low-
band alpha sources this decrease linearly correlated with the
age in occipital and limbic areas. For the high-band alpha
sources, a similar linear correlation with age was also com-
puted in parietal, occipital, temporal, and limbic areas.
However, the present EEG sources showing significant lin-
ear correlation with age also unveiled a nonlinear (exponen-
tial, logarithmic, and power) correlation with age.

Figure 2.
Regional LORETA solutions (mean across subjects) relative to a
statistical ANOVA interaction among factors Group (Nyoung,
Nold), Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2), and ROI
(central, frontal, parietal, occipital, temporal, limbic). This ANOVA
design used the normalized relative current density values of the
LORETA solutions at the ROI level as a dependent variable.
Regional LORETA solutions modeled EEG relative power spectra
as revealed by “virtual” intracranial macroelectrodes “placed” on
the macrocortical regions of interest. Rectangles indicate the
cortical regions and frequency bands in which LORETA solutions
presented statistically significant differences between Nyoung and
Nold groups (P � 0.05, planned Tukey post-hoc testing). See
Subjects and Methods for further details. [Color figure can
be viewed in the online issue, which is available at www.
interscience.wiley.com.]

Figure 3.
Scatterplots between individual regional LORETA solutions and
age in all Nyoung and Nold subjects considered as a single group.
These solutions refer to the EEG sources showing a statistically
significant difference in magnitude between Nold and Nyoung
groups, namely, occipital delta source as well as occipital, and
limbic alpha 1 source as well as parietal, occipital, temporal, and
limbic alpha 2 sources. Results of the linear correlation (Pearson
test, Bonferroni-corrected at P � 0.05) between individual re-
gional LORETA solutions and age are reported in the diagrams.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com.]
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The present results also revealed that, even if statistically
significant (up to P � 0.00003), the absolute values of the
linear correlation were not very high (ranging from r � 0.24
to r � 0.43). Similar correlative values were obtained with
nonlinear procedures. These results indicate that focusing
on dual relationships between a single EEG cortical source
and physiological aging may be insufficient to model effects
of aging on cortical rhythms. This is true even if both linear
and nonlinear trends are taken into account. It can be spec-
ulated that variance of the correlative data might be ex-
plained by considering complex relationships among EEG
cortical sources and physiological aging. Future studies us-
ing artificial neural networks might reveal that outlier sub-
jects having paradoxical low posterior alpha source activity
together with a young age may be characterized by peculiar
combinations of several cortical sources and physiological
aging, namely, low posterior alpha but high posterior delta
together with young age. This may be crucial to enhance the
predictive value of such a quantitative EEG analysis for
clinical application in the field of physiological and patho-
logical aging.

These results extend in spatial-frequency detail previous
EEG evidence on physiological aging that pointed to a dis-
tributed decrease of the alpha power at extended (8–13 Hz)
alpha band [Christian, 1984; Obrist, 1954, 1963; Marsh and
Thompson, 1977; Celesia. 1986; Ehlers and Kupfer, 1989;
Markand, 1990; Klass and Brenner, 1995].

From a physiological point of view, the effects of physio-
logical aging on posterior alpha rhythms are not surprising.
The posterior alpha rhythms reflect the activity of domi-
nant oscillatory neural networks in resting adults and rep-
resent a very global functional feature of the working brain
[Klimesch, 1999]. These rhythms are mainly modulated by
thalamo-cortical and cortico-cortical interactions facilitat-
ing/inhibiting 1) the transmission of sensorimotor informa-
tion between subcortical and cortical pathways, and 2) the
retrieval of semantic information from cortical storage [Bru-
nia, 1999; Pfurtscheller and Lopes da Silva, 1999; Steriade
and Llinas, 1988]. High-voltage alpha rhythms in the resting
condition are usually considered a sign of healthy brain
activity during relaxed wakefulness. The low-band alpha
rhythms would be mainly related to a subject’s global atten-

tional readiness, whereas the high-band alpha rhythms
would reflect the oscillation of specific neural systems for
the elaboration of sensorimotor or semantic information
[Klimesch, 1996; Klimesch et al., 1997, 1998]. At rest, the
voltage of the alpha rhythms would be inversely correlated
with the cortical excitability and level of attention processes
depending on the novelty and importance of stimulus. For
this reason, it has been suggested that the amplitude of
alpha rhythms and corresponding cortical excitability reflect
at least in part the time-varying inputs of forebrain cholin-
ergic pathways [Ricceri et al., 2004]. These concepts consti-
tute an important element of the current theory on the
functional meaning of alpha rhythms.

Keeping in mind the mentioned concepts on the func-
tional meaning of alpha rhythms, the present results can be
explained as follows: Across physiological aging the de-
creased magnitude of the posterior alpha sources might be
associated with very early changes in the functioning of the
cholinergic basal forebrain system, which is supposed to
induce a sustained increase of the excitatory activity in the
cholinergic brainstem pathway [Kobayashi and Tadashi,
2002; Sarter and Bruno, 1997, 1998]. As a consequence, the
thalamocortical excitability would slightly desynchronize
the resting alpha rhythms at the cortical level [Muzur et al.,
2002], producing a mild enhancement of cortical excitability.
In line with this explanation, previous studies have shown
that resting EEG rhythms around alpha are lowered in mag-
nitude by experimentally induced impairment of the cholin-
ergic pathways stemming from the basal forebrain [Hol-
schneider et al., 1998; Mesulam, 2004]. Furthermore,
previous EEG evidence has indicated a decrease of the alpha
power in MCI and mild AD subjects, who are supposed to
suffer from an impairment of cholinergic basal forebrain
[Babiloni et al., 2004; Dierks et al., 1993, 2000; Frodl et al.,
2002; Grunwald et al., 2001; Huang et al., 2000; Jelic et al.,
1996, 2000; Moretti et al., 2004; Rodriguez et al., 1999a,b].
Finally, it has been demonstrated that cholinergic basal fore-
brain but not cholinergic brainstem innervations are im-
paired in AD [Geula and Mesulam, 1989, 1996, 1999; Mash et
al., 1985; Mesulam, 2004; Tanaka et al., 2003b].

From a functional point of view, the reduced magnitude
of the posterior alpha sources across normal aging suggests

TABLE III. Correlation between LORETA current density and age (coefficient of determination r2)

Linear Logarithmic Exponential Power

Occipital delta LORETA current density 0.07 0.08 0.06 0.08
Parietal alpha 1 LORETA current density 0.03 0.03 0.02 0.02
Occipital alpha 1 LORETA current density 0.09 0.09 0.07 0.07
Temporal alpha 1 LORETA current density 0.01 0.01 0.01 0.01
Limbic alpha 1 LORETA current density 0.06 0.06 0.04 0.04
Parietal alpha 2 LORETA current density 0.1 0.1 0.12 0.12
Occipital alpha 2 LORETA current density 0.18 0.19 0.2 0.2
Temporal alpha 2 LORETA current density 0.08 0.08 0.09 0.08
Occipital alpha 1 LORETA current density 0.14 0.14 0.16 0.16

Correlation between individual regional LORETA solutions and age in all Nyoung and Nold subjects considered as a single group
The r2 value is reported for linear, exponential, logarithmic, and power function. Of note, only the regional LORETA solutions showing
statistically significant differences between Nyoung and Nold groups were considered.
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progressive linear changes of the thalamo-cortical and cor-
tico-cortical systems impinging upon visual-spatial atten-
tion. This explanation is in line with the well-known clinical
findings of an increase of visual-spatial deficits from MCI to
mild AD [Arnaiz and Almkvist, 2003; Wang and Zhou,
2002]. In parallel, the limbic sources of alpha activity point to
progressive changes across physiological aging of the
thalamo-cortical and cortico-cortical systems regulating the
attentional tone for memorization [Wolf et al., 2003].

It can be argued that the reduced magnitude of the cortical
alpha rhythms across physiological aging was merely due to
slowing of the alpha frequency peak, defined as the fre-
quency associated with the strongest EEG power in the
extended alpha range. Indeed, a clear slowing of the alpha
frequency peak in normal adults during physiological aging
has been reported [Kopruner et al., 1988; Klimesch, 1999]. In
contrast, another study has shown that such a slowing was
nonsignificant across physiological aging but was evident
only between 60 and 80 years [Duffy et al., 1984]. Finally, a
trend has also been demonstrated towards a reduction of
alpha power with age, partly due to the effects of low
education in the oldest subjects [Hartikainen et al., 1992].
With reference to this issue, it is improbable that the present
results on alpha source power can be explained as an effect
of the slowing of the alpha frequency peak and of differ-
ences in education across aging. In the vast majority of our
young and elderly subjects the alpha frequency peak was
observed in the low-band alpha range (8–10.5 Hz). Further-
more, effects of aging were observed on the alpha source
power with similar magnitude for both low-band and high-
band alpha rhythms but not for the contiguous theta
rhythms (4–8 Hz). This is clearly incompatible with the
claim that, across aging, these effects are due to a transition
of alpha frequency peak towards the theta range. Finally, in
our study alpha frequency peak and education were used as
covariates in group comparisons of the alpha source power
between Nyoung and Nold.

The decrease of occipital delta EEG sources with age
contradicts previous EEG evidence showing a power in-
crease at delta (2–4 Hz) and theta (4–8 Hz) bands other than
the well-known strong power decrease at alpha bands [Ce-
lesia. 1986; Christian, 1984; Ehlers and Kupfer, 1989; Marsh
and Thompson, 1977; Obrist, 1954, 1963; Markand, 1990;
Klass and Brenner, 1995]. However, although less fre-
quently, age has been reported to inversely relate to the
amount of delta/theta, indicating that the amount of slow
activity in quantitative EEG does not increase with age in the
context of good health status [Hartikainen et al., 1992]. In
one study the subjects’ cognitive status was evaluated after
2 years [Hartikainen et al., 1992] and deterioration in learn-
ing ability at the follow-up correlated with an increase in
delta activity in seven of the subjects. Keeping in mind these
data, a tentative explanation of the present findings might be
that a significant magnitude increase of low-band EEG
sources is not a marker of physiological aging. Rather, it
may be a marker of subclinical cognitive deterioration in
physiological aging. This explanation is based on the fact

that the subjects in our study were carefully selected to
exclude persons having early cognitive decline compatible
with MCI, early mild AD, vascular and/or extrapyramidal
comorbidity. Furthermore, the explanation is compatible
with the fact that, compared to normal subjects, delta
and/or theta rhythms do increase even in the earlier stages
of AD [Schreiter-Gasser et al., 1994] and seem to predict
disease progression [Ihl et al., 1996; Nobili et al., 1999]. In
addition, MCI subjects also have shown an increase of the
theta (4–7 Hz) power [Grunwald et al., 2001; Jelic et al., 1996;
Zappoli et al., 1995] and decrease of the alpha power [Frodl
et al., 2002; Grunwald et al., 2001, 2002; Huang et al., 2000;
Jelic et al., 1996; Zappoli et al., 1995]. It is noteworthy that
these EEG parameters have presented an intermediate mag-
nitude in MCI subjects with respect to those observed in
Nold and dementia patients [Elmstahl and Rosen, 1997;
Huang et al., 2000; Jelic et al., 2000].

CONCLUSIONS

This electroencephalographic (EEG) study tested whether
cortical EEG rhythms (especially delta and alpha) show a
progressive increasing or decreasing trend across physiolog-
ical aging. To this end, we analyzed the type of correlation
(linear and nonlinear) between cortical EEG rhythms and
age. Statistical results showed that delta sources in the oc-
cipital area had significantly (P � 0.04) less magnitude in the
Nold compared to the Nyoung subjects. Similarly, the alpha
1 and alpha 2 sources in the parietal, occipital, temporal, and
limbic areas had significantly (P � 0.00003) less magnitude
in the Nold compared to the Nyoung subjects. These nine
EEG sources were given as an input for the evaluation of the
type (linear, exponential, logarithmic, and power) of corre-
lation with age. In the subjects considered as a single group,
there was a significant linear correlation with age of the
magnitude of delta sources in the occipital area and of alpha
1 sources in the occipital and limbic areas. The same was
true for the alpha 2 sources in parietal, occipital, temporal,
and limbic areas. The EEG sources showing significant lin-
ear correlation with age also pointed to a strong nonlinear
correlation with age. On the whole, the present results sug-
gest that occipital delta and posterior cortical alpha rhythms
showed a progressive decrease with age with both linear
and nonlinear components. This new methodological ap-
proach holds promise for the prediction of dementia in mild
cognitive impairment by regional source rather than surface
EEG data and by both linear and nonlinear predictors.
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