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Hypothesis

Brain Networks and How to Study 
Their Organization

In recent years, the concept of networks (Sporns 2011) 
has been adopted to define several complex systems in 
almost all fields, such as economics, politics, and biol-
ogy. In neuroscience, the term “network” implies several 
system properties that accurately characterize the com-
plexity of brain connectivity; these properties include 
highly structured connectivity patterns, multiscale orga-
nization and non-linear dynamics. On a large scale, the 
brain’s composite “wiring diagram forms a network of 
hundreds of brain regions and thousands of white matter 
axonal pathways interconnecting those regions” (from 
van den Heuvel and Sporns 2011) (see Sporns 2011, 
2013). Brain function emerges from the activation of 
these pathways, which can be dynamically reconfigured 
according to contingent demands. Such flexibility under-
lies the brain’s ability to sustain cognitive functions and 
to adapt and adjust to changing environments (Bassett 
and Sporns 2017).

Neuroscience researchers have expressed great inter-
est in exploring the dynamics of brain network connectiv-
ity. The field of brain connectivity can be referred to as 
“connectomics,” an area of research that aims to provide 

comprehensive maps of all neural connections within the 
nervous system. These neural maps incorporate several 
levels and include the following: structural descriptions 
of connectivity, that is, structural elements and connec-
tions forming the human brain (Lang and others 2012); 
functional descriptions of connectivity, that is, the statis-
tical correlations between distinct brain regions in terms 
of information processing (Friston and others 1993b); 
and effective descriptions of connectivity, that is, the 
description of the causal influences that given neural 
units exert over other neural units (see Box 1). As a gen-
eral example, brain connectivity may be compared to the 
organization of a city: neighborhoods, which represent 
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Abstract
The human brain is a complex network in which hundreds of brain regions are interconnected via thousands of axonal 
pathways. The capability of such a complex system emerges from specific interactions among smaller entities, a set 
of events that can be described by the activation of interconnections between brain areas. Studies that focus on 
brain connectivity have the aim of understanding and modeling brain function, taking into account the spatiotemporal 
dynamics of neural communication between brain regions. Much of the current knowledge regarding brain connectivity 
has been obtained from stand-alone neuroimaging methods. Nevertheless, the use of a multimodal approach seems 
to be a powerful way to investigate effective brain connectivity, overcoming the limitations of unimodal approaches. 
In this review, we will present the advantages of an integrative approach in which transcranial magnetic stimulation–
electroencephalography coregistration is combined with magnetic resonance imaging methods to explore effective 
neural interactions. Moreover, we will describe possible implementations of the integrative approach in open- and 
closed-loop frameworks where real-time brain activity becomes a contributor to the study of cognitive brain networks.
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Box 1.  Schematization of Connectivity Measures.

In studying connectivity, the aim is to understand how neural elements exchange signals and influence each other. 
Connectivity can be defined from an anatomical (i), functional (ii), or effective (iii) viewpoint. Anatomical/structural 
(i) connectivity corresponds to the anatomical layout of axons and synaptic connections that determines which neu-
ral units can directly interact with each other (Friston 1994). Considering that the total number of neocortical neurons 
is 15 to 32 billion (with interindividual variation) and that each neuron has an average of 7000 synaptic connections 
(Herculano-Houzel 2009; Pakkenberg and Gundersen 1997; Walløe and others 2014), we can recognize that these 
are the anatomical constraints that limit which neural populations can link to form biological neural networks. 
Nevertheless, these wiring diagrams among neurons in the brain have a further grade of complexity that is defined 
by how “strong” or “direct” their interactions are. This increase in complexity is driven by communications between 
neurons and is defined by the “temporal correlations between spatially remote neurophysiological events”, or func-
tional (ii) connectivity (Friston and others 1993a; Friston and others 1993b). Therefore, functional connectivity 
defines statistical dependencies and does not reveal the nature of the temporal correlation or allow the determination 
of instrumental interactions between regions, i.e., how well the activation in one node explains the activation in 
another and therefore what is the strength of the functional connection between the two, in a given state. Causal 
interactions are implemented in the study of effective (iii) connectivity, which is defined as the “causal influence that 
one neural system exerts over another either directly or indirectly” (Friston and others 1993a); thus, a causal model 
theoretically explains the initiation and direction of information flow.

Figure Box 1.  Representation of the modes of brain connectivity. (A) Sketches at the top illustrate structural (i) connectivity 
(fiber pathways), functional (ii) connectivity (correlations), and effective (iii) connectivity (information flow) among four brain 
regions in the macaque cortex (adapted from figure 1 of http://www.scholarpedia.org/article/Brain_connectivity).
(B) Information flow of structural connectivity analysis by parcellation of the brain volume into coherent regions on the 
basis of structural or connectional features from magnetic resonance (MR) imaging. (a) Water molecules move faster 
along than across neuronal fiber. (b) Diffusion affects the electromagnetic waves radiated by precessing protons. (c) dMR 
imaging captures diffusion signals along different directions and forms images. (d) Fiber orientation distributions (FODs) are 
reconstructed from diffusion images. (e) Fiber tracts are simulated from FOD images. (f) The brain cortex is segmented into 
many regions using structural MR images. (g) Connectivity networks between cortex regions are constructed from fiber 
tracts (adapted from Li and others 2016).
(C) Extraction of brain networks from empirical data follows node assignment by placement of sensors and/or recording sites 
from electroencephalography (EEG), but the same can be obtained from magnetoencephalography (MEG), functional magnetic 
resonance imaging (fMRI), and positron emission tomography (PET) data (part of the figure adapted from thenassauguardian.
com); (h) recording of time series data to estimate coupling; (k) construction of a connection matrix representing functional/
effective networks. Obtaining measures of effective connectivity with neuroimaging techniques requires complex causal 
models, such as dynamic causal modeling, Granger causality, and information-theoretic methods (Friston and others 2013; 
Sporns and others 2004), given that these techniques cannot address causality. Causality can be inferred through perturbation 
by non-invasive brain stimulation and EEG recording (Bortoletto and others 2015).

http://www.scholarpedia.org/article/Brain_connectivity
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regions, are connected by streets, which represent struc-
tural connectivity. Such architecture influences how peo-
ple move around the city and intermingle with each other, 
representing functional connectivity. Notably, the direc-
tionality of human interactions in the city can also be 
described, as some people influence the behavior of other 
people, representing the effective connectivity among 
elements of the network. This analogy highlights that the 
relationship between structure and function is dynamic 
because it is arranged based on contingent demands, 
which can be represented by a person acting toward goals 
in a changing environment (see Friston and others 1993b; 
Sporns and Betzel 2016). Therefore, active connections 
are determined by many factors, such as the type of infor-
mation, the amount of processing required, the state of 
the subject, any previous experience, and the complex 
relations among these elements. Thus, understanding 
how dynamical neuronal patterns give rise to human 
brain functions is one of the most intriguing and prevalent 
questions in neuroscience. Nonetheless, at present, 
researchers have not achieved a complete understanding 
of how the intricate structural architecture of the brain 
sustains functional brain dynamics.

In recent studies, brain connectivity has been investi-
gated mainly by means of stand-alone neuroimaging 
methods. The principal instruments of investigation are 
structural magnetic resonance imaging (MRI), functional 
MRI (fMRI), diffusion tensor imaging (DTI), computa-
tional tractography, positron emission tomography, func-
tional near-infrared spectroscopy, transcranial magnetic 
stimulation (TMS), electroencephalography (EEG), and 
magnetoencephalography. Most of these neuroimaging 
methods address functional and effective connectivity, 
while MRI and DTI address structural connectivity 
(Fig.  1). However, each individual neuroimaging tech-
nique has both strengths and weaknesses. One possibility 
for addressing these weaknesses is to combine tech-
niques, such that it becomes feasible to merge informa-
tion and overcome some of the limitations of individual 
techniques.

Here, we outline what we consider to be a promising 
approach for studying connectomics. This approach take–
s advantage of the integration of TMS, EEG, and MRI 
and imitates the strategy of the nervous system, relying 
single-element interactions to produce a complex behav-
ior. We believe that TMS and EEG steered by MRI infor-
mation might incorporate the complexity of the 
phenomenon into a whole if used in a method-compre-
hensive context. First, we will briefly describe the state of 
art of the TMS-EEG coregistration approach (Bortoletto 
and others 2015; Daskalakis and others 2012; Ilmoniemi 
and Kičić 2010; Miniussi and Thut 2010; Tremblay and 
others 2019) and then emphasize the opportunity offered 
by the integration of TMS-EEG with MRI. Last, we will 

contemplate future scenarios in which TMS-EEG (or 
based on the integration type: EEG-TMS) and online 
measures of activity could be used in an open-/closed-
loop approach to explore and modify neural activity in 
the brain. This integrative approach holds remarkable 
promise as a probe to elucidate basic mechanisms in both 
the normal and pathological brain. Thus, it opens new 
opportunities for integrative neuroscience to be used for 
diagnostic and therapeutic purposes.

Features of TMS-EEG Integration

In the past two decades, the combination of single-pulse 
TMS and EEG, that is, TMS-EEG, has been proposed as 
an ideal tool to investigate cortical excitability and effec-
tive connectivity in normal (Rogasch and Fitzgerald 
2013; Siebner and others 2009; Thut and Pascual-Leone 
2010) and pathological brains (e.g., Bagattini and others 
2019; Darmani and Ziemann 2019; Massimini and others 
2012; Ragazzoni and others 2017; Sarasso and others 
2014; Trevizol and Blumberger 2019) (see Box 2). Using 
EEG to track the activity induced by TMS, which propa-
gates directly or indirectly to anatomically and function-
ally connected regions (Bonato and others 2006; 
Ilmoniemi and others 1997; Rogasch and others 2013; 
Voineskos and others 2010), it is possible to investigate 

Figure 1.  Connectivity can be represented based on 
the resolution that a given method occupies in this space. 
This figure shows the spatial and temporal resolution of 
the principal neuroimaging methods used to study brain 
connectivity. However, it is not merely the spatial and 
temporal selectivity that make neuroimaging a useful 
experimental approach; it is the ability of each single method 
to also define functional or structural connectivity. An ideal 
approach would integrate some of these techniques, covering 
a larger area of the figure space. fNIRS, functional near-
infrared spectroscopy; PET, positron emission tomography; 
fMRI, functional magnetic resonance imaging; MRI, magnetic 
resonance imaging; DTI, diffusion tensor imaging; EEG, 
electroencephalography; TMS, transcranial magnetic 
stimulation; MEG, magnetoencephalography.
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communication across networks at rest and during execu-
tion of cognitive tasks (Bortoletto and others 2015). The 
spreading of activity that reaches connected areas, includ-
ing those that are spatially distant (Komssi and others, 
2002), depends on the underlying intra- and interhemi-
spheric structural pathways and on the parameters of the 
induced electric field. When the induced electric field is 

stronger, the TMS-induced spreading is also more robust 
(Nieminen and others 2015). Given that the strength of 
the effect of TMS depends on the coil geometry and stim-
ulation parameters, such as the position and orientation of 
the coil, which affects the depolarization of the neurons 
(Casarotto and others 2010; Komssi and others 2004), 
spreading can be used as a dependent variable.

Box 2.  Connectivity and Neurological Disorders.

The study of brain connectivity improves our knowledge about the functioning of the brain in a healthy condition, 
and when a chronic or an acute event affects the nervous system, it opens the opportunity to understand brain con-
nectivity more thoroughly. Neurological diseases, such as neurodegenerative pathologies, alter nodes and thereby 
cause the network connections to be altered. The consequences of neurological events have an impact on both the 
topology and functioning of the network, resulting in behavioral deficits in everyday life. TMS-EEG has been 
employed to evaluate altered connectivity in specific pathologies such as Alzheimer’s disease (Bagattini and others 
2019; Casarotto and others 2011; Koch and others 2018) and as a tool for the early diagnosis of mild cognitive 
impairment (Bagattini and others 2019; Julkunen and others 2008). Koch and others (2018) measured changes in 
precuneus connectivity after a TMS protocol among patients in the early stages of Alzheimer’s disease. These altera-
tions in the connections were followed by selective improvement of episodic memory. The evidence described by the 
authors shows that TMS-EEG is able to measure effective connectivity and may represent an important tool for clini-
cal diagnosis, with a secondary prospect of tracking recovery and rehabilitation (e.g., Ragazzoni and others 2017).

Figure Box 2.  Representation of TMS-evoked response (global mean field power [GMFP]) and TMS-evoked oscillatory 
activity in patients with early-stage Alzheimer’s disease (from Koch and others 2018). The upper left panel (1 TMS-evoked 
cortical activity) shows that effective frontoparietal connectivity increases after the real stimulation protocol. The black 
line (A, B) represents the GMFP measurement before the repetitive TMS (or sham) stimulation protocol. The single TMS 
stimulation pulse was delivered over the prefrontal cortex (PC). The increase in cortical activity starts at 60 ms and lasts 
until 90 ms. The red line represents the same measure recorded after a 2-week treatment (repetitive TMS or sham) that 
consisted of 40 trains of 20-Hz stimulation for 2 seconds per train, alternating with 28 seconds of no stimulation. No 
significant effects were detectable when the same analysis was conducted on the cortical response after single-pulse TMS 
over the posterior parietal cortex (I-PPC) (C, D).
The upper right panel (2 TMS-evoked oscillatory activity) shows the TMS-EEG response in the time-frequency domain. The 
results show an enhancement of beta activity in the PC in terms of spectral power after the real (A) and sham (B) stimulation 
protocols. As for the time domain, no significant effect was detectable when the same analysis was conducted on the l-PPC 
(C, D) (from Koch and others 2018).
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The cortical response induced by the TMS can be eval-
uated as an evoked response that provides information on 
phase-locked oscillations to the TMS pulse (TMS-evoked 
potentials TEPs) or as a total oscillatory response (also 
called event-related spectral perturbation), which captures 
both the phase-locked and non-phase-locked oscillations 
following TMS pulse (Pellicciari and others 2017). The 
former provides measures of effective connectivity with 
high temporal resolution by analyzing the amplitude and 
latencies of TEPs across the scalp or of the global field 
power (Hill and others 2016, but see Conde and others 
2019). The latter allows us to explore the impact of TMS in 
the frequency domain, which provides an opportunity to 
examine the functional specificity of brain rhythms in cog-
nition (Thut and Miniussi 2009). Although most studies 
have measured TMS-EEG after motor cortex stimulation, 
it is possible to observe the cortical response to TMS in 
other cortical areas (Bagattini and others 2019; Rosanova 
and others 2009). In all cases, an appropriate control con-
dition should be employed when running connectivity 
protocols because TMS-EEG might also produce periph-
eral stimulation that can result in confounding cortical 
activation (Conde and others 2019).

Importantly, accumulated evidence has demonstrated 
that cortical responses recorded in different cortical areas 
with TMS-EEG have a high level of reproducibility and 
importantly can be used as measure sensitive to longitu-
dinal changes (Casarotto and others 2010; Farzan and 
others 2010; Kerwin and others 2018; Lioumis and others 
2009). For instance, Casarotto and others (2010) evalu-
ated the similarities/differences between pairs of TEPs 
recorded in the same/different stimulation conditions 
through a single-subject comparison. The obtained index 
(divergence index) was able to detect whether a change in 
the perturbation parameters occurred or not, proving that 
the obtained measures are sensitive to evaluating longitu-
dinal changes.

Consequently, TMS-EEG measures may provide 
potential biomarkers in neurological and psychiatric dis-
eases (Tremblay and others 2019). Koch and others 
(2018) have provided evidence of informative TMS-
EEG measurements concerning the evaluation of patients 
with Alzheimer’s disease before and after a treatment 
protocol. The TMS-EEG signal indexed an increase in 
neural activity of the parietal cortex, measured as a 
change in amplitude of the global mean field power 
peaks and augmentation of brain oscillations in the beta 
band. It has also been possible to evaluate changes in the 
functional connections between the parietal cortex and 
medial frontal areas within the default mode network. 
Moreover, a recent review (Hui and others 2019) reports 
evidence of the involvement of alterations in gamma 
oscillations in the prefrontal areas for depression and the 
potential of TMS-EEG to identify this as a reliable 

biomarker. Other studies (Colombo and others 2019) 
have focused on the possibility of deriving an index from 
TMS-EEG, which may be helpful for supporting the 
diagnosis and valuation of clinical conditions (i.e., con-
sciousness disorders).

Features of TMS-EEG and MRI 
Integration

As described in the previous section, TMS-EEG has a 
high temporal resolution that helps infer effective con-
nectivity. However, the spatial resolution is low both for 
localizing the target region and for estimating the sources 
of the TMS-induced responses. Therefore, TMS-EEG has 
often been integrated with MRI to improve the spatiotem-
poral information of brain network connectivity. The 
choice of proposing a methodologically integrated 
approach relies on the possibility of establishing an effi-
cient tool for exploring connectivity in a comprehensive 
scenario (Fig. 2). The advantages of involving an inte-
grated approach are several.

Many studies have integrated TMS-EEG with MRI to 
guide target location based on individual features. MRI 
information is of high importance when the target area is 
not the primary motor cortex, which is the only area that 
can be functionally localized with TMS using an objec-
tive method (i.e., motor-evoked potential). In fact, using 
MRI to guide target location allows us to overcome the 
high interindividual variability of cortical areas. The spa-
tial definition of the regions of interest by MRI is more 
accurate and can help provide precise constraints to TMS 
navigation (Ning and others 2019). Ning and colleagues 
(2019) demonstrated a quantitative assessment of topo-
graphic precision and variability to identify cortical tar-
gets for neuromodulation. They described how several 
variables might affect the reliability of the targeting strat-
egy, such as the data quality and the preprocessing. 
Moreover, the spatial resolution of TMS depends on sev-
eral variables, such as coil geometry, coil orientation, 
pulse intensity, and head/brain anatomy. Individualized 
modeling or empirical assessments of the TMS-induced 
electric field may be an important additional step to maxi-
mize the efficacy of target and network modulation with 
TMS. Since a different architecture may correspond to 
differences in functional signal propagation, it would be 
possible through the combination of TMS-EEG and 
structural and functional maps to enhance the structural 
resolution and focus the stimulation to the interesting 
nodes with millimetric precision. Having the precise 
coordinates of the target areas derived from neuroimag-
ing maps reveals a more accurate definition of the struc-
tural nodes and thus the opportunity to use spatial 
constraints for a more precise TMS-EEG connectivity 
evaluation.
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The most common approach is to define the target 
based on anatomical landmarks. This approach is essen-
tial if the stimulation site is outside the primary motor, 
somatosensory, or visual cortexes. Having the precise 
structural description of the target area reduced the inter- 
and intraindividual variability to the TMS-induced 
response. The anatomical landmarks derive from the MRI 
acquisition. The coil is positioned using the individual 
coordinates and monitored during the whole recording 
through a neuronavigation system. The anatomical land-
marks used in neurophysiological measurements involved 
both anterior and posterior regions, that is, prefrontal and 
parieto-occipital cortices (Gonzalez-Escamilla and others 
2018; Mattavelli and others 2019; Schauer and others 
2016; Vernet and others 2015).

Moreover, the target can be individuated based on 
cortical activity associated with a specific task. With 
this approach, the accuracy of individualizing the 
involved cortical area to a specific cognitive task is 
higher. The cortical coordinates, used for TMS-EEG, 
derive from the coregistration of the fMRI, used for 
detecting task-based activation, to the structural imag-
ing of each individual. Even if the literature has identi-
fied the main (i.e., average) areas involved during any 
cognitive task, individuals have differences in structural 
and functional brain organization. In the presence of the 
activation maps, it is feasible to investigate such nodes 
with simultaneous TMS-EEG recordings, with a deeper 
precision in stimulating the target cortical node. 
Referring to the TMS-EEG literature, this approach is 

rare. Usually, individual anatomical landmarks are used 
based on previous fMRI studies (Kroczek and others 
2019; Pisoni and others 2018). This approach is mainly 
used to inform stand-alone methods, such as TMS stud-
ies (Bolognini and others 2011; Bolognini and others 
2014 Rocchi and others 2016).

Interestingly, the target area can also be individuated 
based on MRI-based connectivity, with the possibility of 
investigating the relationship between structural indexes 
of anatomical connectivity and the temporal dynamics 
through TMS-EEG. The chance of implementing connec-
tivity MRI measurements for both guiding and exploring 
the relation between the temporal dynamics and the 
underlying structural pathways represents a novel and 
promising approach for a better understanding of network 
activity (Fig. 3). A great possibility for reaching this aim 
may correspond to integrating TMS-EEG with MRI, 
fMRI, and DTI. The latter has great potential for describ-
ing how brain areas are connected to each other and thus 
to functions. Data analysis of the complex structural 
organization of the brain and the contributions of DTI 
provides quantitative information about the white matter 
of the brain. Through mathematical models called con-
strained spherical deconvolution (Tournier and others 
2007), it is possible to estimate the distribution of fiber 
orientations and generate tractograms (Olivetti and others 
2016; Porro-Muñoz and others 2015). They represent the 
structural connectome of the brain and can then be used 
as the underlying map to plan specific explorations of 
effective connectivity.

Figure 2.  The scheme represents the three stand-alone methods [tractography (diffusion tensor imaging, DTI); functional 
magnetic resonance imaging, fMRI; and transcranial magnetic stimulation–electroencephalography coregistration, TMS-EEG] and 
the nature of the connectivity measure that can be provided by each method: structural, functional and effective, respectively. 
The integration of these neuroimaging methods can provide a more complete explanation of cortical connectivity if performed 
during the maximal information exchange between areas.
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In fact, in an integrative scenario, functional regions of 
interest can be used to define the structural pathways 
underlying the functional network of interest. In this way, 
it would be possible to explore the functional dynamics of 
a target network, with its related anatomical connections. 
To reach this aim is crucial to extrapolate measures for 
both the structural and functional information and explore 
their relationship.

The integrated TMS-EEG-MRI approach is the most 
informative. However, a few technical limitations must 
be considered. The first challenge to face consists of find-
ing a conjunction within all the different neuroimaging 
methods. The spatiotemporal characteristics, of each 
involved method, are different and thus lead us to focus 
on cortical information. Of course, this is an essential 
lack in the more in-depth comprehension of the dynami-
cal integration at the basis of network processing. Another 
consequence of this issue is the restriction of the recon-
struction of white matter pathways.

Through the proposed methodological combination of 
TMS-EEG and neuroimaging, it is feasible to increase the 
spatial constraints for a better explanation of the temporal 
dynamics. The high spatial resolution of MRI and tracto-
grams can help clarify the architecture of the brain 
(Bullmore and Sporns 2009). From the connection of 

each local neuronal community, it is possible to define a 
map of the brain architecture. “This means that all nodes 
of a large system are linked by relatively few intermedi-
ate steps. Most nodes maintain only a few direct connec-
tions, mostly within a clique of neighbours” (from 
Bullmore and Sporns 2009). The resulting architectural 
map is the structural connection pattern of each node with 
other nodes. This is in line with the idea of combining 
structural and functional connectivity to provide con-
straints that inform effective connectivity (Seghier and 
Friston 2013). The functionality of these nodes may be 
different based on their interactions and can be evaluated 
by TMS-EEG. Therefore, a different node rearrangement 
of the functional organization may correspond to differ-
ent measurements. Hence, with the proposed TMS-EEG-
MRI integrative approach, it will be feasible to provide 
strong and informed structural constraints to the explora-
tion of neurophysiological signal propagation into the 
intricate brain architecture. At the same time, it will be 
feasible to study the prediction of the signal flow among 
the fibers drawn by tractography.

The topological organization of brain properties in 
terms of regional connectivity has been recently studied 
with graph theory (Bassett and Bullmore 2006; Bassett 
and Sporns 2017). Graph theory has helped clarify how 

Figure 3.  The image describes the possibility of integrating transcranial magnetic stimulation–electroencephalography 
coregistration (TMS-EEG) and diffusion tensor imaging (DTI) with correlation analysis. (a) The two cortical areas shown here 
(red spheres) are structurally connected by a direct path. In the proposed example, a single-pulse TMS is delivered over the 
left region of interest. (b) The TMS-evoked potentials (TEPs) recorded in the area contralateral to the stimulated area, which 
is structurally connected (blue circle), are averaged, and the correlation of each time point with the size of the tractogram 
is evaluated. In the TEP graph, the significant component is overlaid with a gray bar; under the graph, the topographic 
correlation is illustrated.
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human cognitive functions are linked to neuronal network 
structures by applying models called graphs, which 
describe brain connectivity. With the TMS-EEG-MRI 
approach, directed graphs are produced. The nodes are 
detectable by fMRI, the edges are measurable by diffusion 
imaging, and the directions are tested by TMS-EEG.

Mapping Brain Connectivity: 
Network Routing Strategy

As we have described above, with the proposed TMS-
EEG-MRI approach (or perhaps, considering the roles of 
the different methods, a more appropriate acronym 
would be MRI-TMS-EEG) it is feasible to obtain a 
detailed view of the spatial (MRI provides the structural 

pathways), temporal (EEG is able to measure the time 
course of the activity of the cortical areas) and effective 
(TMS gives the information about directionality) features 
of brain function at a macroscopic level (Fig. 4). This 
approach increases the level of detail with which the 
causal links between brain architecture and dynamics can 
be examined, which could radically improve our under-
standing of brain connectivity (Avena-Koenigsberger and 
others 2017). This integrative approach may be useful in 
better understanding the communication of signals among 
nodes in complex networks. Determining how and which 
spatiotemporal routes are used by the signal in each cir-
cumstance represents a feasible method for achieving 
deeper knowledge of the flow of information in the 
brain. This information flow may follow different routes 

Figure 4.  Integrating physiological evidence from transcranial magnetic stimulation–electroencephalography coregistration 
(TMS-EEG) may improve network modeling to better describe signal propagation among the elements of a network. The image 
(from Bortoletto and others 2015) “represents the modular organization of the brain network. (a) Nodes (gray circles), local 
hubs (gray squares), and rich-club hubs (red squares) are included, along with their short-range (black lines) and long-range (red 
lines) connections. (b) Colored arrows represent the causal interactions between nodes and the latency of signal propagation 
from the TMS pulse. After TMS, the activation of the target area travels to other nodes of the same module through short-range 
connections. (c) When two lower-degree nodes of the same network are stimulated by TMS, the signal propagates within the 
same module. Different nodes (site-specific responses) are activated at first, followed eventually by the hubs connected to both 
initial sites (site-invariant responses)” (see Bortoletto and others 2015).
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(Avena-Koenigsberger and others 2019). Some EEG sig-
nal components may follow short, direct pathways, while 
others may follow more complex routes, moving through 
more nodes of the same networks. Recently, there has 
been a strong interest in modelling networks (network 
neuroscience) to describe and predict their function. The 
topology of connectivity is able to shape the pattern of 
interaction between the elements of a system, which, in 
turn, regulates its global behavior. Routing communica-
tion describes the possibility of two nodes of a network 
to communicate if they are joined by a path, where the 
length of the path is crucial for the efficacy of the com-
munication. For example, in real neural systems, the 
number of synapses between systems is ideally mini-
mized, considering that the risk of noise and the meta-
bolic cost increase with the path length.

Although routing communication is efficient in 
describing communication for small networks, the issue 
becomes more delicate when we consider conditions that 
present a higher level of complexity. Modeling informa-
tion processing among a large number of elements is 
challenging (Tadić and others 2019). The difficulty in 
explaining the flow of information in the brain relies on 
the nature of the electrophysiological brain signal 
(Deslauriers-Gauthier and others 2019). Different com-
ponents of the signal may encode different information, 
which may follow several different routes, such that the 
overall information flow is spread across all the routes of 
each signal component. The integration of the functional 
dynamics is essential for explaining the mechanism that 
enables information to flow efficiently among different 
elements of a network through a complex topology 
(Deriche 2016). Capitalizing on the strengths of the inte-
grated TMS-EEG and MRI approach can help character-
ize the physiological basis of this information flow. 
Correlating spatially distributed physiological signals 
with structural pathways, within clear confines, has the 
potential to explain the relation between network dynam-
ics and network topology. Furthermore, positive conse-
quences may follow in the clinical domain. The proposed 
integrated approach will merit consideration as an instru-
ment for sensitive quantification of previously subjective 
signal signatures (see Box 2).

EEG-Informed Systems: Future 
Implementations of EEG-TMS

Thus far, we have described the advantages of imple-
menting an integrative TMS-EEG approach for studying 
network activity. We will now detail the potential of using 
an informative EEG-TMS system, where the brain activ-
ity recorded by EEG drives stimulation in the exploration 
of brain dynamics. Neuroimaging methods have mainly 
investigated the brain in an “offline, open-loop” fashion 

using an a priori–defined stimulus protocol to dictate the 
input and its timing. Then, the outputs measured offline 
are used to modify protocols in subsequent experiments 
or to formulate theories. Although this approach has been 
truly productive (e.g., Romei and others 2010; Thut and 
others 2011), it has not taken the brain into consideration 
as a fully active effector (Bergmann 2018). In the offline, 
open-loop approach, the neurophysiological or behav-
ioral responses are analyzed after brain stimulation in an 
a posteriori procedure, which fails to take into consider-
ation the state of the brain at the moment of the input.

Broadly defined, a brain state can be considered the 
recurring set of activity of a neural population underlying 
a specific configuration over a defined time period and 
characterized by specific contingencies (Bergmann and 
others 2016). Therefore, such a configuration relies on a 
specific neuronal population with excitatory/inhibitory 
circuits that can define the final output of the network. 
More specifically, the coordinated activity of such a neu-
ral population defines the extension of the network and 
characterizes the functional state. Therefore, defining the 
activity-dependent network configuration becomes a key 
element to characterize the principle of brain functioning 
for any given function (Zrenner and others 2016; Zrenner 
and others 2018) underlying that the dynamic aspect is a 
key element to advance our understanding. The EEG-
TMS guided by MRI provides new opportunities for 
studying the brain by designing stimulation protocols that 
are controlled in real time by the brain state itself via the 
EEG signal and thus creating an online, open-loop system 
(Karabanov and others 2016) to test different specific 
configurations. The estimation of brain states may be 
reached in different ways, for example, with a measure of 
frequency of an oscillation of interest (i.e., alpha oscilla-
tion) or with the instantaneous phase (Bergmann and oth-
ers 2012; Sauseng and others 2009; Thut and others 
2011), although the estimation should take into consider-
ation several aspects that may affect its accuracy. 
Stimulation intensity, coil geometry, coil orientation, and 
skull distance may interfere in obtaining a clear cortical 
response. Moreover, it might be difficult to measure 
undisturbed brain states, given that the tool that we use to 
evaluate the state can contaminate the measured brain 
activity. Even single TMS pulses induce changes in corti-
cal excitability; therefore, we might underestimate the 
dependence of a previous TMS pulse on the response 
modulation of a second single pulse (Pellicciari and oth-
ers 2016). Additionally, other technical issues are impor-
tant to take into consideration, such as EEG impedance, 
which may affect the current density recorded, which 
would be distorted by the electric fields generated by 
TMS (Saturnino and others 2019).

This approach can be developed even further when 
the system/network output is controlled using a 
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closed-loop approach (Fig. 5). Therefore, an evolution 
in testing brain functions is to use an online open- or 
closed-loop approach, where the brain activity informs 
the input or even controls the system (Bergmann 2018; 
Zrenner and others 2016).

As a standard definition, an open loop is a type of 
control system in which the input (here, the TMS pulse) 
to the brain is delivered at a predefined set point (here, 
a given brain state) and implies that the output (here, 
the brain response) has no “direct” influence (i.e., con-
trol) on the next input to the brain (i.e., influences of 
the input will be related only to the eventual reaching of 
the aforementioned set point by the brain state). Thus, 
we can manipulate the inputs based on the set point to 
be delivered at a given moment to obtain the desired/
predicted effect on the output of the system. Therefore, 
the state of the brain is used to guide the stimulation 
(i.e., control signal), allowing an improvement in test-
ing the brain response in specific conditions but with-
out “direct” feedback to the system. The control action 

relates to the given TMS parameters applied in a given 
area identified by MRI.

The other approach is a closed loop, which implies 
iteratively controlling the system state via a given signal 
with the additional purpose of reaching and maintaining a 
predefined set point. The aim is to reduce deviations from 
that set point by monitoring the parameter to provide 
feedback and adjusting the control signal (TMS) accord-
ingly via a feedback loop.

The logic of open-/closed-loop systems can be 
explained using the brain-computer interface (BCI) 
approach, but in the EEG-TMS approach, the production 
of a given brain activity is driven by the EEG-TMS inter-
action and not by the subject. BCIs are systems that allow 
brain activity (i.e., via EEG recordings) to be utilized to 
control external devices without using the natural motor 
corticospinal pathways (Mak and Wolpaw 2009). A BCI 
uses brain activity to obtain the information that modu-
lates the outputs and provides feedback to the subject for 
learning how to control the output. With EEG-TMS, the 

Figure 5.  Schematic of the combined electroencephalography–transcranial magnetic stimulation (EEG-TMS) and magnetic 
resonance imaging (MRI) approach. (a) After the definition of the anatomy of the system by means of tractograms derived 
from MRI, TMS can be navigated (nTMS) within the confines of the skull to accurately target an area. (b) The system output 
can be recorded by EEG (or other biobehavioral markers) and supplied to the different loops. The green arrows represent 
an open-loop approach, a type of control system in which the input to the brain is given at a predefined set point defined by 
real-time analyses and classifier algorithms (c), and the approach implies that the output has no “direct” influence on (i.e., 
control over) the next input to the brain. The blue arrows represent a closed-loop approach that uses feedback where a 
specific portion of the output signal (d) is fed back to the TMS controller (e) to induce a precise stimulation to drive a given 
state in the brain.
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inputs (i.e., TMS pulses) to the brain are controlled by the 
brain state. However, the different element is that the sub-
ject might not be asked to drive a device, the brain pattern 
is modulated by the TMS pulse, while the EEG drives 
features of that pulse.

Consequently, by these approaches using the EEG 
traces of a given brain state overlaid on MRI data, it is 
possible to iteratively adjust/decide TMS parameters. 
Examples include the timing and/or frequency, intensity, 
and stimulation site that will be used to test, suppress, 
facilitate, or even maintain that brain state with well-
defined parameters by means of TMS (Bergmann and 
others 2016; Thut and others 2017). In short, we can 
reduce the reliance of experiments on stimulus-response 
statistics. Clearly, in order to develop an open-/closed-
loop TMS-BCI, there must be a working understanding 
of the underlying neural response dependency (Panzeri 
and others 2016). With an open-loop EEG-TMS inter-
face, we preferentially test the system in a given condi-
tion to establish how such a condition can determine the 
output. In a closed-loop EEG-TMS interface, the idea is 
that the feedback loop, via a controller, affects the system 
output. The former approach is ideal to study the system, 
and the latter approach is ideal to control it and define the 
consequences of a given state.

With such approaches, we are able to measure brain 
state values through the oscillatory activity of neuronal 
populations (Buzsáki and Draguhn 2004), which occurs 
on various spatial and temporal scales and can be quan-
tified by several measures, from which the most relevant 
in this context might be the phase and the relative fre-
quency. In fact, fluctuations in a brain state can be 
described as a phase shift of a specific frequency band 
that defines the development of excitatory and inhibi-
tory periods (Destexhe and others 2007). For example, 
adopting EEG-TMS and MRI (Fig. 5) in an open-loop 
design will allow us to evaluate changes in brain states 
through measures of neuronal synchronization, such as 
phase, thereby describing how a stimulated cortical area 
interacts with functionally and structurally connected 
areas. Triggering the TMS based on the phase compo-
nent evoked by the previous pulse might guide the 
exploration of network connectivity based on the brain 
states. This may be explained by the hypothesis of com-
munication through coherence (Fries 2005, 2015). 
Central to this hypothesis is that the modulation of oscil-
latory phase relationships among neuronal populations 
underlies communication. TMS pulses interact with 
oscillatory phases in terms of excitability, modifying the 
synchronization between oscillatory populations. The 
communication is facilitated when two oscillatory pop-
ulations are aligned to their high excitability phases. 
Monitoring the phase time alignment of local rhythmic 
activity allows the temporal pattern of TMS inputs to be 

adjusted such that the exploration of cortical connectiv-
ity is conducted during the period of maximal informa-
tion exchange.

Applications of Open- and Closed-
Loop Systems

Recent studies have focused on applying TMS to the 
motor cortex with an open-loop approach (Gharabaghi 
and others 2014; Kraus and others 2016; Meincke and 
others 2016; Raco and others 2016; Royter and Gharabaghi 
2016; Zrenner and others 2016; Zrenner and others 2018), 
obtaining evidence of the impact of brain states or activity 
on cortical excitability. Zrenner and others (2018) provide 
a detailed description of how real-time EEG can guide the 
exploration of corticospinal excitability through different 
phases of the endogenous sensorimotor mu-rhythm. The 
phase prediction was obtained with a fast Fourier trans-
form. These studies opened new opportunities for adap-
tive TMS applications in the context of neurorehabilitation 
as a control system for neuromodulatory approaches 
(Zrenner and others 2016).

Moreover, the application of a closed-loop system has 
guided the controlled release of a treatment drug in a 
medical context. Yang and Shanechi (2016) used a closed-
loop system to monitor the brain state via EEG and con-
trol the level of burst suppression (i.e., amount of 
reduction in bursts of increased electrical activity); this 
feedback approach was successfully used to regulate, in 
real time, the injection of an anesthetic drug to keep the 
patient in a constant state.

Another study applied a closed-loop system during a 
protocol that is normally used in motor rehabilitation. In 
this work, Markovic and others (2014) explored the pos-
sibility of improving grasping by combining the electro-
myography signal and artificial vision in a group of 
healthy subjects. The authors showed that using a closed-
loop system, it was possible to improve the subject’s 
motor performance.

In general, we might use an open-loop protocol with 
an adaptive method for exploring how the system’s 
response sensitivity varies across stimulations or regions 
to define the “temporal dimension” of an effect. Based on 
the experimental aim, once we have established the 
parameters that increase or decrease the system sensitiv-
ity, we then design stimuli or experiments to estimate the 
model parameters. As efficiently as possible to increase 
or reduce the system sensitivity by a closed-loop approach 
to produce a reliable and repeatable performance.

Studying the brain is challenging because the relevant 
stimulus space is often a high-dimensional space 
(Mutanen and others 2013), and neural responses are sto-
chastic, meaning that repeated TMS of an area elicits 
variable responses. However, using an EEG-TMS 
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open-loop approach, we can reduce the stimulus space. 
Moreover, any variations measured in this context should 
then be considered reflections of key physiological 
mechanisms in the workings of the brain (McDonnell 
and Ward 2011; Panzeri and others 2017).

Open-/closed-loop system implementation with EEG-
TMS is still technically difficult. It is extremely impor-
tant to take into consideration that the loop between the 
stimulus and the signal must be on the order of millisec-
onds due to the phase dependence of brain activity to 
avoid phase shift. This reasoning is valid for all kinds of 
latencies; consequently, it is important that the delay in 
signal processing, while it is transferred to the buffer, 
must have a sub-millisecond precision. Auspiciously, 
real-time processing of neural signals is becoming more 
feasible each day through the ever-increasing computa-
tional power of modern microprocessors. Other impor-
tant obstacles with the concurrent EEG-TMS recording 
are the artifacts induced by the TMS pulse (approxi-
mately 5-10 ms) because of amplifier saturation (see 
Veniero and others 2009). These artifacts can be 
approached with temporal interpolation, filtering, chan-
nel and/or epoch rejection and with algorithms, such as 
independent component analysis (ICA; Hyvarinen, 
1999) or the source-estimate-utilizing noise-discarding 
(SOUND) algorithm (Mutanen and others 2018). ICA 
algorithms are a feasible means of removing ocular arti-
facts and residual TMS-related artifacts. The SOUND 
algorithm might rid the neurophysiological data of the 
remaining nonstationary disturbances. Moreover, com-
patible equipment already exists and is available for the 
combined EEG-TMS recording. Therefore, the most 
important focus should be on the development of a robust 
and efficient pipeline for online analysis via a classifier 
algorithm. There are BCI studies from other fields, as 
cited above, which may be helpful in inspiring the future 
of this approach and the needed analysis (e.g., Kothe and 
Makeig 2013; sccn.ucsd.edu/wiki/BCILAB).

There is also a neural issue: While controlling a single 
neuron is a relatively straightforward problem that 
implies specific timing, the temporal dynamics can 
become highly complex at the network level. Therefore, 
we should take into account that physiological limitations 
are sometimes also present and arise from the constraints 
imposed by brain computation time. For example, the 
sensory systems have processing delays ranging between 
~10 and 50 ms (e.g., somatosensory vs. visual) before the 
signal reaches the cortex. On the other hand, when TMS 
is delivered, it is conceivable that the response to stimula-
tion extends to seconds as the signal is relayed through 
complex networks. Therefore, such delays should be con-
sidered, since they can be a key element in achieving an 
improved understanding of the temporal dynamics of the 
network.

Conclusions

Studying brain connectivity is simultaneously interest-
ing and challenging. Connectivity has a complex nature 
that requires a complex system to explore it. However, it 
is very important to invest in an integrative approach in 
the field of connectomics. The potential advantage of 
combining different methods is that it yields, a single, 
more complex instrument, which can provide more 
information that reduces variability in the data. In this 
way, it may be possible to reduce the gap between func-
tion and structure in the context of integrative neurosci-
ence. Considering the open-/closed-loop scenarios, the 
TMS trigger is temporally guided by brain activity that 
becomes part of the experimental protocol in an adap-
tive approach, and it is spatially guided by the nodes 
estimated from neuroimaging. By adopting such a con-
figuration, it is possible to study and manipulate the 
brain by guiding it through one direction or another. 
Therefore, with the open-/closed-loop setting, we will 
be able to explore the cognitive architecture and test our 
hypothesis online. This approach describes a process 
where theory can be extracted from direct applications 
and overcomes the fundamental limits of indirectly test-
ing our hypotheses by a correlative approach on a static 
“picture” of the brain. This approach provides an oppor-
tunity to non-invasively characterize in real time the 
causal dynamic relationships between brain cognitive 
architecture and neural responses, with the goal of 
understanding how diverse functions are integrated to 
produce complex behaviors.
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