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Abstract
The visual motion-responsive middle temporal complex (hMTþ) is activated during tactile and aural motion discrimination in

both sighted and congenitally blind individuals, suggesting a supramodal organization of this area. Specifically, non-visual

motion processing has been found to activate the more anterior portion of the hMTþ. In the present study, repetitive

transcranial magnetic stimulation (rTMS) was used to determine whether this more anterior portion of hMTþ truly plays a

functional role in tactile motion processing. Sixteen blindfolded, young, healthy volunteers were asked to detect changes

in the rotation velocity of a random Braille-like dot pattern by using the index or middle finger of their right hand. rTMS

was applied for 600 ms (10 Hz, 110% motor threshold), 200 ms after the stimulus onset with a figure-of-eight coil over

either the anterior portion of hMTþ or a midline parieto-occipital site (as a control). Accuracy and reaction times were

significantly impaired only when TMS was applied on hMTþ, but not on the control area. These results indicate that the

recruitment of hMTþ is necessary for tactile motion processing, and thus corroborate the hypothesis of a ‘supramodal’

functional organization for this sensory motion processing area.
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Introduction

In humans, visual perception of motion activates a specific
circuit of the temporo-occipital cortical regions that classi-
cally includes the middle temporal complex, hMTþ.1 – 3

This motion-responsive extrastriate area is also activated
during apparent and illusory motion, and mental imagery
of movement.3 – 6 Furthermore, hMTþ responds to the per-
ception of auditory or tactile motion in sighted,7 – 9 as well
as in congenitally blind, individuals.8,10,11 These latter find-
ings indicate that hMTþ also processes non-visual sensory
inputs of motion and that visual experience is not a prere-
quisite for the development of the functional organization
of this motion-responsive area. These results extend to
hMTþ the supramodal functional organization demon-
strated in other ‘visual’ ventral and dorsal extrastriate

cortical areas that process perceptual information indepen-
dently from the sensory modality through which such infor-
mation is acquired.12 – 17

Visual experience, however, leads to a functional segre-
gation of the motion-responsive hMTþ into a more anterior
portion, corresponding to the middle superior temporal
cortex, that responds to both visual and tactile motion,
and a more posterior portion that is involved only in the
processing of visual motion.8,11,18,19

Whether the neural response in hMTþ associated with
non-visual motion stimuli is truly related to a causative
role or rather is merely an epiphenomenon remains to be
determined. Transcranial magnetic stimulation (TMS) pro-
vides a unique method to interfere with neuronal function
in specific brain regions and assess the consequent effects
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on behavioral performance.20 – 22 Indeed, the application of
either single-pulse or repetitive TMS (rTMS) on area
hMTþ resulted in impaired processing of visual moving
stimuli.23 – 25 Specifically, TMS-associated decrease in per-
formance occurs between 130 and 150 ms following stimu-
lus onset with single-pulse TMS during processing of
visual moving stimuli,26 or 200 ms with rTMS during
visual discrimination of stimulus speed.27

Although TMS in the tactile domain has been used
mainly to alter neural activity in the somatosensory cortex
and to modulate cutaneous perception and sensorimotor
transformations,28 a small number of functional studies
have applied TMS to extrastriate temporo-occipital regions
to investigate sensory processing through touch, mainly in
blind individuals. For instance, disrupting function of the
occipital cortex using TMS interferes with tactile discrimi-
nation in both sighted and congenitally blind subjects,29,30

while tactile sensations have been reported in early blind
individuals following stimulation of the entire occipital
cortex using single-pulse TMS.31

The present study was designed to examine whether the
functional activation of hMTþ found in response to non-
visual motion stimulation is required for processing tactile
motion information, or is merely an epiphenomenon with
no functional role. The first case would be in line with the
hypothesis of a supramodal organization of this cortical
area, whereas the second one would suggest that non-visual
motion stimuli are actually processed elsewhere.
Specifically, we applied rTMS on hMTþ during a tactile
task that required subjects to discriminate speed changes
of a moving Braille-like dot pattern. The stimulation site
for hMTþ was chosen to induce transient interference of
neural activity in the more anterior portion that has been
shown to be activated in response also to non-visual
motion-perception, as explained above.9,18,19

Materials and methods

Subjects

Sixteen healthy volunteers (seven men, mean age+SD ¼
23+ 2 y; range: 20–28 y) were enrolled into the study. All
of them were right-handed, according to the Edinburgh
Handedness Inventory32 (range: 71–100%). All participants
were free of any medical, neurological or psychiatric dis-
order, had no contraindications to rTMS33,34 and were not
taking any medication. All participants gave their written
informed consent after the study procedures and the risks
involved had been explained, and received a reimbursement
for participating to the study. The whole experimental pro-
tocol was approved by the Ethics Committee of IRCCS
Fatebenefratelli, Brescia, Italy.

Experimental procedure

Participants were seated in a quiet room with their head
placed on a chin rest. A cylinder covered by a grid of
Braille-like plastic dots that could be rotated at different
speeds by an engine system was enclosed in a polystyrene
box with an aperture on the upper part to allow participants

to insert the finger to be stimulated and to comfortably rest
the other fingers on a support (see Figure 1). Participants
were blindfolded while they touched the cylinder with
either the index or the medium finger (alternatively,
between blocks) of their right dominant hand; a pink
noise at 50 dB was used to mask the sounds associated
with the changes in the rotation speed of the engine.
Participants were instructed to focus their attention on the
tactile stimulation, and to press the keyboard spacebar
with their left hand whenever they detected a change in
the rotation velocity of the grid under their finger.

The cylinder was placed horizontally along its major axis
in front of the subjects (Figure 1). The cylinder surface was
made of a regular grid of plastic dots (diameter 0.5 mm,
height 0.5 mm, density 0.8/cm2). The cylinder rotated out-
wardly at five different speeds by means of an electric
engine connected to a computer through a controller,
which received impulses from the parallel port and trans-
lated them into variations in the power passed to the
engine. The five cylinder speeds were set to regularly
increase from 0.42 up to 0.62 rounds per second. The five
velocities were coupled to obtain four velocity gaps,
which were randomly presented in an increasing and
decreasing way (i.e. passing from a slower to a faster
speed, or vice versa). After starting, the flow of the speed
change sequence continued with no interruption until the
40th trial, following a predetermined (but different
between blocks) sequence. The disposition of velocities in
couples produced a total of 20 different gaps separated
into four levels on the basis of the distance between the
two speeds, ranging from one (e.g. speed 3 versus speed

Figure 1 A representation of the experimental setting: the rotating cylinder

was completely contained within a polystyrene box. Participants inserted

one finger into the fissure, directly over the rotating surface of the cylinder
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4) up to four (e.g. speed 1 versus speed 5). The number of
stimuli for the largest gaps was repeated to obtain an
equal number of stimulations (eight) for each category.
Moreover, eight catch trials (with no speed changes) were
included in each block. Thus, a total of 32 þ 8 ¼ 40 trials
were presented at five interstimulus intervals ranging
from 4000 up to 6000 ms (different by 500 ms). Blocks
lasted four minutes each, and were presented interleaved
with a pause of five minutes.

rTMS protocol

Repetitive TMS was applied using a Magstim Super Rapid
magnetic stimulator and a figure-of-eight coil (double
70 mm) (Magstim Company Limited, Whitland, UK).
Before the experiment, individual active motor excitability
thresholds of stimulation were determined by applying a
single TMS pulse on the left motor cortex to induce a mus-
cular contraction in the contralateral hand. The threshold
was defined as the minimum intensity that induced a
visible contraction in the tested hand on at least five out
of 10 trials. The stimulation intensity used during the exper-
iment was set at 110% of each subject’s threshold. The mean
stimulation intensity (as a percentage of the maximum
machine output) was 52% (range 47–59%). During the
experiment, rTMS was delivered starting 200 ms after any
‘trial onset’ (i.e. at the change of speed) using a train of
seven pulses with a frequency of 10 Hz (i.e. lasting a total
of 600 ms), which is within safety guidelines for rTMS.33

The stimulation interval was chosen in order to cover the
temporal window including both the stimulus arrival and
its early processing in the sensorial areas. Participants toler-
ated the rTMS procedure well, and did not report any
adverse effects or complaints.

The targeted stimulation sites were either the anterior
portion of the left hMTþ in the experimental condition or
an interhemispheric site (Talairach coordinates35 X ¼ 0,
Y ¼ 276, Z ¼ 30; POz, according to the 10–20 nomencla-
ture) during the control condition (Figure 2). The control
condition was included to rule out any generic effects due
to the interference arising from non-specific rTMS effects
or the procedure itself.

The stimulation site for the anterior portion of hMTþ was
chosen accordingly to the local maxima that was previously
identified in those regions that responded significantly
during tactile motion perception in sighted volunteers
(Talairach coordinates X ¼ 249, Y ¼ 262, Z ¼ 58), and con-
sistently reported in the literature.18,19 These sites were loca-
lized on the subject’s scalp using the SofTaxic Evolution
Navigator system (www.emsmedical.net). The SofTaxic
Navigator system permits the computation of an estimated
volume of magnetic resonance imaging (MRI) of the sub-
ject’s head to guide TMS coil positioning. The estimated
volumes of MRI are automatically calculated by the means
of a warping procedure, through the operation of a generic
MRI volume (template) on the basis of a set of points digi-
tized from the subject’s scalp. With respect to using the
individual subject’s MRI for the coil localization on the
target area, the mean error of the estimated MRI obtained
with the above procedure was 2.11 (SD: +2.04) mm. This
error is comparable to the spatial resolution of TMS on the
cerebral cortex and to the individual average variability of
hMTþ location.7

During the experiment, participant heads were stabilized
on a chinrest, while the coil was fixed by means of an articu-
lated mechanical holding arm (Manfrotto Magic arm with
two clamps, www.manfrotto.com) and a heavy duty
tripod for all conditions. This arm allowed maximum flexi-
bility for positioning the coil at the desired location, and for
selecting the appropriate orientation and providing
maximum stability once fully positioned.

For hMTþ stimulation, the coil was placed tangential to
the scalp with the handle pointing 458 off the midsagittal
axis of the subject’s head. In contrast, in the control con-
dition the handle was parallel to the midsagittal axis, point-
ing anteriorly.

Participants were presented with five blocks (one practice
and four experimental); both rTMS site (control-TMS,
hMTþ -TMS) and Finger (index, middle) were randomized.
The first block was always without TMS in order to familiar-
ize the participants with the task. Trial administration, con-
sisting of the transmission of the impulses through the
parallel port, and the measurement of accuracy and reaction
time (RT) were controlled by Presentationw (Neurobehavioural
Systems Inc., Albany, CA, USA).

Figure 2 Locations of the stimulated sites on the cerebral cortex: (a) experimental site (left hMTþ, transverse slice at Z ¼ 5) and (b) control site (interhemispheric

sulcus, transverse slice at Z ¼ 30) as identified using the SofTaxic system. (c) View of a three-dimensional brain reconstruction showing the localization of the two

stimulation sites
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Statistical analysis

A series of repeated measures analysis of variances was
carried out on the percent values of correct responses and
the mean RT, considering the following independent
within-subjects variables: Gap (4 levels, ranging from 1 to
4, determined by the distances between the speeds), Speed
direction (acceleration versus deceleration), Finger (index
versus middle) and rTMS site (control TMS or hMTþ
TMS). The Gap 0 level was a repetition of the last speed
with no change in speed direction, and thus was not
included in the analyses. To avoid empty cells, missing
data were estimated through a series of multiple linear
regressions,36 given that the go/no-go paradigm implies to
collect a response only whenever a change was detected.
Control and hMTþ conditions resulted in a total of about
10% and 20% of missing values, respectively. Statistical ana-
lyses were done by means of Statistical Package for Social
Science (SPSS) statistical software (SPSS Inc, Chicago, IL,
USA).

Results

The analysis of accuracy showed a significant main effect for
the Gap (i.e. greater accuracy for larger gaps in speed
changes; F3,13 ¼ 220.5, P , 0.01, h2 ¼ 0.94), Speed direction
(i.e. greater accuracy for decelerations of speed; F1,15 ¼

28.3, P , 0.01, h2 ¼ 0.65) and TMS site (F1,15 ¼ 18.3, P ,

0.05, h2 ¼ 0.55) factors. Moreover, the interactions Gap �
Speed direction (i.e. more accurate for decelerations of
speed at narrower gaps in speed changes) and Gap� TMS
site were also significant (F3,13 ¼ 4.119, P , 0.05, h2 ¼ 0.22
and F3,13 ¼ 4.164, P , 0.05, h2 ¼ 0.22, respectively), as
shown in Table 1 and Figure 3a. No significant finger
effect (F3,13 ¼ 0.1, P , NS, h2 ¼ 0.01) or interactions were
found for accuracy. Overall, accuracy was significantly
impaired when rTMS was applied over hMTþ as compared
with the control cortical site, and the greatest reductions in
performance were seen with the smaller (i.e. the most diffi-
cult) gaps in speed changes.

In the RT analysis, the Gap (F3,13 ¼ 28.4, P , 0.01, h2 ¼

0.66; Table 1) and TMS site (F1,15 ¼ 5.1, P , 0.05, h2 ¼

0.25) factors also were significant, consistent with the accu-
racy analysis results. Furthermore the TMS site factor
showed a significant interaction with Speed direction
(F1,15 ¼ 7.138, P , 0.05, h2 ¼ 0.33), as the TMS-mediated
interference had a greater behavioral effect when subjects
had to detect an acceleration of speed (Figure 3b), and the
highest increases in RT were found for the smaller (i.e. the
most difficult) gaps in speed changes. No significant
finger effect (F3,13 ¼ 0.7, P , NS, h2 ¼ 0.05) or interactions
were found for RT.

Discussion

This experiment was designed to determine whether the
activation in the ‘visual’ area hMTþ found in response to
tactile motion stimuli reflects a true functional role of this
area during non-visual motion perception or is merely an
epiphenomenon. Multiple functional MRI (fMRI) studies
have demonstrated that hMTþ responds to both tactile
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and auditory discrimination of motion,7 – 11 and have
consistently indicated a functional localization of non-
visual motion processing in the more anterior part of
hMTþ .8,11,18,19 Furthermore, neural activation of this corti-
cal area in response to either tactile or aural motion percep-
tion has also been demonstrated in congenitally blind
individuals, thus showing that the involvement of hMTþ
in non-visual motion detection cannot be justified simply
by visual imagery, but rather represents a supramodal func-
tional organization within hMTþ .7 – 11 A similar supramo-
dal functional organization has been shown both in the
ventral and in the dorsal ‘visual’ cortical pathways during
object recognition and spatial discrimination,12 – 14,37 and in
other prefrontal and parietal cortical areas subserving
higher-order cognitive functions, such as mental imagery,
working memory and action recognition.16,17,37

To verify the study’s hypothesis, we used rTMS to modu-
late neuronal activity in the more anterior part of hMTþ
during a tactile motion discrimination task. We reasoned
that if hMTþ activity during tactile discrimination of
motion is simply an epiphenomenon, then rTMS on
hMTþ cortex should have no effect on the individual per-
formance in detecting velocity changes. On the contrary, if
activity in hMTþ reflects a true functional role in discrimi-
nating tactile motion, then we should observe an impair-
ment in task performance when rTMS is applied to hMTþ
cortex as compared with when it is applied to the control
cortical site.

rTMS applied to the more anterior part of hMTþ
(Talairach coordinates X ¼ 249, Y ¼ 262, Z ¼ 5) produced
a significant impairment (decreased accuracy and increased
RTs) in the subject’s ability to detect changes in the velocity
of the rotating dotted grid by the tactile modality as com-
pared with rTMS on the task-unrelated cortical control site.
To our knowledge, this is the first TMS-related evidence
that corroborates the hypothesis of a modality-independent
representation of motion in hMTþ by demonstrating a
functional role of this cortical area during a non-visual task,
specifically, during a tactile speed motion detection task.

These findings are in agreement with and extend to the
tactile domain previous experiments using TMS over the
hMTþ cortical area during visual motion and visual
speed discrimination tasks.23,26,27,38 – 42 As previously
reported, both psychophysical and brain functional features
are similarly associated with touch and vision in motion dis-
crimination.23,43 – 45 The overlap in the timing of rTMS
stimulation in our tactile task with the visual experimental
setting in the study by McKeefry and collaborators27

further supports this correspondence between tactile and
visual discrimination of motion and speed.

As expected, rTMS effects on tactile discrimination of
velocity changes were more pronounced when the task
was more difficult (i.e. with narrower gaps of rotating
speed changes). The acceleration/deceleration direction of
the velocity changes showed a significant interaction with
the Gap factor, as participants were generally more accurate
when detecting a deceleration rather than an acceleration in
speed, primarily with the narrower and more demanding
gaps of rotating speed changes. Moreover, the
TMS-mediated effect on RT was greater when subjects had
to detect an acceleration of speed. While we know that the
ability to scale tactile speed motion is critically dependent
on the surface structure, that is, it is higher with textured
than smoother surfaces,43 we have no information regarding
the importance of speed direction of the stimuli at either a
psychophysical or a neural level (e.g. central encoding of
acceleration/deceleration signals). In the visual domain, a
study with a pattern of moving dots showed that the subjec-
tive perception of velocities was underestimated more after
accelerations than after decelerations,46 likely because of
distinctive speed-dependent adaptation mechanisms in
hMTþ .47 Thus, the results of the present study are consis-
tent with, and extend to the tactile modality, the hypoth-
esized adaptation of the perceptual system to accelerating
but not to decelerating speeds, so that decelerating
changes become more salient to the subject.

In the present study, we did not include a visual task
component to examine the effects of rTMS on hMTþ

Figure 3 Average accuracy (a) and reaction time (b) values for TMS crossed with Speed direction are represented as a function of Gap (+SEs). Bars representing

experimental stimulation are shown with full color, while control stimulation bars are shown with stripes filling. Accelerating speed direction is represented in

black, while grey indicates decelerating speed direction. hMTþ, middle temporal complex; TMS, transcranial magnetic stimulation
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during visual discrimination of motion in the same subjects,
as many studies had already demonstrated that TMS appli-
cation over hMTþ results in an impaired performance
during visual perception of moving stimuli.23 – 27,38 – 42

However, in light of the recent fMRI findings indicating
the functional segregation within hMTþ discussed
above – a more anterior part that responds to both visual
and tactile motion, and a more posterior part that responds
to visual motion only8,11,18,19 – it would be of interest to
compare the effects of selective disruptions of neural
activity in these two subareas while subjects perform a com-
bination of visual and tactile motion detection tasks. Given
the results reported here, this would be the optimal para-
digm to verify the distinctive functional role of the two
hMTþ subregions. According to the functional imaging
data discussed above and the results of the present study,
we would expect that rTMS over the anterior (as shown
here) but not the posterior part of hMTþ would disrupt
tactile motion perception while visual motion detection
would be affected by rTMS over the whole hMTþ.
Moreover, a similar rTMS study should be conducted in
congenitally blind individuals to investigate to which
extent the topographical functional organization within
hMTþ develops in the absence of visual experience.8,10

Finally, given that auditory motion has also been found to
engage the hMTþ both in sighted and in congenitally
blind individuals,11 a future study should include an audi-
tory motion task as well.

Another limitation of this study is the lack of functional
localizers in the individual subjects to ensure that the TMS
stimulation site may not overlap, even in part, with neigh-
bor supramodal or multisensory areas in the lateral occipital
cortex (LOtv),12,13 or in the multisensory superior temporal
sulcus (STSms).48 It should be kept in mind, however, that
the localization of the anterior portion of hMTþ used as
the site for TMS stimulation (Talairach coordinates x: 249,
y: 262, z: 58) is sufficiently distant from the more dorsal
and anterior STSms center-of-mass (x: 244, y: 235, z:
1348) and the more ventral LOtv localization (x: 245+ 5,
y: 262+ 6, z: 29+ 312), to be clearly distinguished by
using, as we did here, the individual subject morphological
MRI scan for the coil localization on the target area (estimated
mean error is 2.11+2.04 mm). Furthermore, as detailed in the
Materials and methods, while the individual average varia-
bility for hMTþ location7 adds a certain amount of error,
this has been estimated to be smaller than the amplitude
of the magnetic field produced by TMS.49

In conclusion, the results of the present rTMS study
provide direct evidence that hMTþ plays a functional role
in tactile motion discrimination tasks, as tactile motion per-
ception is significantly impaired when neural activity in
hMTþ is disrupted by rTMS. Thus, the activation revealed
in hMTþ by previous functional brain imaging studies
during tactile motion processing indicates that the func-
tional organization of this cortical area is not merely
visual in nature.
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