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Abstract

It is an open issue if vascular and Alzheimer’s disease (AD) lesions represent additive factors in the development of mild cognitive impairment

(MCI), as a preclinical stage of Alzheimer’s disease (AD) at group level. In the present study, we tested the hypothesis that electroencephalographic

(EEG) alpha rhythms, which are affected (i.e. decreased in amplitude) by AD processes, are relatively preserved in MCI subjects in whom the

cognitive decline is mainly explained by white-matter vascular load. Resting EEG was recorded in 40 healthy elderly (Nold), 80 MCI, and 40

AD subjects. In the MCI subjects, white-matter vascular load was quantified based on MRI (0–30 Wahlund visual rating scale). EEG rhythms of

interest were delta (2–4Hz), theta (4–8Hz), alpha 1 (8–10.5Hz), alpha 2 (10.5–13Hz), beta 1 (13–20Hz), and beta 2 (20–30Hz). Low resolution

electromagnetic source tomography (LORETA) was used for EEG source analysis. As expected, we observed that alpha 1 sources in parietal,

occipital, and temporal areas were lower in amplitude in the AD and MCI subjects than in the Nold subjects, whereas the amplitude of wide delta

sources was higher in the AD than in the Nold andMCI subjects. As novel results, the amplitude of parietal, occipital, and temporal alpha 1 sources

was higher in the MCI V+ (high vascular load; N= 42; MMSE= 26) than MCI V− group (low vascular load; N= 37; MMSE= 26.7). Furthermore,

a weak but significant (p< 0.05) positive statistical correlation was found between the parietal alpha 1 sources and the score of Wahlund scale

across all MCI subjects (i.e. the more severe white-matter lesions, the higher parietal alpha source power). The present results are in line with the

additive model of cognitive impairment postulating that this arises as the sum of neurodegenerative and cerebrovascular lesions.

© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

It has been shown that modifications of resting electroen-

cephalogram (EEG) across physiological aging in humans
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pointed to gradual changes in EEG spectral power as mainly

represented by a pronounced amplitude decrease of dominant

EEG oscillations, namely rhythms in the alpha range from 8 to

13Hz (Dujardin, Bourriez, & Guieu, 1994; Dujardin, Bourriez,

& Guieu, 1995; Ehlers & Kupfer, 1989; Hartikainen, Soininen,

Partanen, Helkala, & Riekkinen, 1992; Klass & Brenner, 1995;

Klimesch, 1999; Markand, 1990; Pollock, Schneider, & Lyness,

1990; Van Sweden, Wauquier, & Niedermeyer, 1993). A recent

study in a large sample of healthy subjects (N= 185; 18–85

years) has confirmed an age-dependent power decrement of
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low-frequency alpha rhythms (8–10.5Hz) in parietal, occipi-

tal, and temporal regions (Babiloni, Binetti, Cassarino, et al.,

2006).

Modifications of resting EEG can be observed not only

during physiological but also pathological aging. When com-

pared to healthy elderly (Nold) subjects, Alzheimer’s disease

(AD) patients have been characterized by high power of delta

(0–4Hz) and theta (4–7Hz) rhythms, and low power poste-

rior alpha (8–12Hz) and/or beta (13–30Hz) rhythms (Babiloni,

Binetti, et al., 2004; Dierks, Ihl, Frolich, & Maurer, 1993;

Ponomareva, Selesneva, & Jarikov, 2003; Prichep et al., 2005).

These EEG abnormalities were associated with altered regional

cerebral blood flow/metabolism and with impaired global cog-

nitive function as evaluated by mini mental state examination

(MMSE; Rodriguez, Copello, et al., 1999; Rodriguez, Nobili,

et al., 1999; Sloan, Fenton, Kennedy, & MacLennan, 1995).

In this framework, the decrement of posterior alpha power

showed peculiar features in AD subjects when compared to

cerebrovascular dementia subjectswith similar cognitive impair-

ment as revealed by MMSE (Babiloni, Babiloni, et al., 2004;

Babiloni et al., 2004a, 2004b, 2004c; Babiloni, Binetti, et al.,

2004; Babiloni, Miniussi, et al., 2004). Furthermore, posterior

alpha power showed a decrement in subjects with mild cognitive

impairment (MCI), a clinical state between elderly normal cog-

nition and dementia in which subjects present objective deficits

of memory in some cases together with other cognitive impair-

ment (Babiloni,Binetti, Cassetta, et al., 2006;Elmstahl&Rosen,

1997; Huang et al., 2000; Jelic et al., 2000; Koenig et al., 2005;

Zappoli et al., 1995).

Despite the above experimental EEG evidence, physiolog-

ical mechanisms at the basis of abnormal EEG rhythms in

AD and MCI subjects are poorly known. To understand these

mechanisms, physiology of brain rhythms in healthy adults

is briefly considered in the following. In the condition of

slow-wave sleep, corticofugal slow oscillations (<1Hz) are

effective in grouping thalamic-generated delta rhythms (1–4Hz)

and spindling activity (7–14Hz) rhythms (Steriade, 2003). In

the condition of brain arousal, spindles, high and low com-

ponents of the delta rhythms are blocked by the inhibition

of oscillators within, respectively, reticulothalamic (7–14Hz),

thalamo-cortical (1–4Hz), and intracortical (<1Hz), neuronal

circuits. These rhythms are replaced by fast (beta and gamma)

cortical oscillations, which are mainly induced by forebrain

(nucleus basalis) cholinergic inputs to hippocampus and cor-

tex as well as by thalamocortical projections (Steriade, Amzica,

& Contreras, 1996). In the condition of awake rest, low-band

(8–10.5Hz) alpha would be mainly related to subject’s global

attentional readiness (Klimesch, Doppelmayr, Pachinger, &

Russegger, 1997;Klimesch,Doppelmayr,Russegger, Pachinger,

& Schwaiger, 1998; Rossini, Desiato, Lavaroni, & Caramia,

1991; Steriade & Llinas, 1988) and would mainly reflect time-

varying inputs of forebrain cholinergic pathways (Ricceri et al.,

2004).

Keeping this theoretical framework in mind, it can be spec-

ulated that changes of resting alpha rhythms in MCI and mild

AD subjects are mainly due to the impairment of cholinergic

basal forebrain neurons rather than sparse white-matter vas-

cular lesion. This impairment would uninhibit cortical slow

oscillators triggering delta and spindles’ pacemakers at tha-

lamic level (Steriade, 2003). Furthermore, it would reduce

cortico-cortical functional coupling of EEG rhythms, that is

the main generation mechanism of awake resting alpha rhythms

at parieto-occipital cortex (Manshanden, De Munck, Simon, &

Lopes da Silva, 2002; Nunez, Wingeier, & Silberstein, 2001).

In precedence, it has been reported that cholinergic basal fore-

brain was more structurally impaired in AD (Teipel et al., 2005),

especially in non-responders to cholinergic therapy (Tanaka,

Hanyu, Sakurai, Takasaki, &Abe, 2003) and that posterior alpha

rhythms were found to be modulated by long-term choliner-

gic therapy in AD subjects (Babiloni, Cassetta, et al., 2006).

It also has been reported that in AD patients, early neurode-

generative processes include loss of cholinergic basal forebrain

neurons projecting to hippocampus and fronto-parietal areas,

and that alpha and slower EEG rhythms can be modulated by

these neurons as a function of vigilance (Holschneider, Waite,

Leuchter, Walton, & Scremin, 1999; Mesulam, Shaw, Mash, &

Weintraub, 2004). Whereas, brainstem cholinergic innervation

of the thalamus would be relatively spared (Geula & Mesulam,

1989, 1996, 1999; Mash, Flynn, & Potter, 1985; Mesulam et

al., 2004). The treatment of AD with cholinesterase inhibitors

would deeply affect not only the mechanisms of EEG gener-

ation but also regional cerebral blood flow in areas related to

attentional and memory functions (Claassen & Jansen, 2006).

This makes it quite complex the relationships among EEG gen-

eration, neurodegeneration at cholinergic basal forebrain, and

abnormalities of regional cerebral blood flow. On one hand,

most of the field studies have explored the relationships among

AD symptoms, neurodegeneration lesions (i.e. neurite plaques

and intracellular neurofibrillary tangles), and cerebrovascular

lesions. Total prevalence of cerebrovascular lesion was found

to be significantly higher in AD patients than in normal sub-

jects (Jellinger &Mitter-Ferstl, 2003). In AD patients, cognitive

and clinical status was affected by the severity of both neurode-

generative and cerebrovascular lesions in hippocampal, anterior

cingulate, and parieto-temporal areas (Etiene et al., 1998). Fur-

thermore, cerebrovascular lesions were associated with greater

overall severity of clinical dementia and poorer cognitive per-

formance (Heyman et al., 1998), especially in the earliest stages

of AD or in subjects older than 80 years (Esiri, Nagy, Smith,

Barnetson, & Smith, 1999; Lee, Olichney, Hansen, Hofstetter,

& Thal, 2000; Mungas, Reed, Ellis, & Jagust, 2001). For similar

severity of dementia symptoms, there were fewer neurodegen-

erative lesions in AD patients with vascular lesions than in

those without vascular lesions, as whether neurodegenerative

and cerebrovascular lesions are additive/synergistic causes of

AD (Nagy et al., 1997; Snowdon et al., 1997; Zekry et al.,

2002). On the other hand, several field studies have explored

the relationships between AD and vascular function. Clinical

and cognitive status of AD patients was in part explained by

amyloid angiopathy of small vessels (Zekry et al., 2003). Fur-

thermore, AD patients carrying ApoE4 allele as a genetic risk

of AD presented an increment of vessel intima-media thick-

ness values with respect to non-carriers and cerebrovascular

dementia patients (Altamura et al., 2007). In contrast, no rela-
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tion was found between ApoE4 allele and the presence/grade

of carotid plaques both in AD and cerebrovascular dementia

patients (Altamura et al., 2007). Finally, evolution of cogni-

tive function in AD patients was unfavorable as a function

of impaired cerebral vasomotor reactivity (Silvestrini et al.,

2006).

Summarizing, posterior alpha rhythms show a marked power

decrement in AD and, to a lesser extent, in MCI subjects;

whereas, they are only slightly affected by cerobrovascular

dementia (Babiloni, Babiloni, et al., 2004; Babiloni et al.,

2004a, 2004b, 2004c; Babiloni, Binetti, et al., 2004; Babiloni,

Miniussi, et al., 2004; Babiloni, Binetti, Cassetta, et al., 2006;

Elmstahl & Rosen, 1997; Huang et al., 2000; Jelic et al., 2000;

Koenig et al., 2005; Zappoli et al., 1995). Thus, posterior alpha

rhythmsmight be sensitive to early neurodegenerative processes

in MCI condition as a possible pre-clinical stage of AD. Fur-

thermore, neurodegenerative and cerebrovascular lesions might

represent additive/synergistic causes of cognitive decline in

pathological aging (Nagy et al., 1997; Snowdon et al., 1997;

Zekry et al., 2002). Keeping in mind these data and consid-

erations, it can be hypothesized that for a similar severity of

cognitive decline, posterior alpha rhythms in MCI subjects are

affected by global neurodegenerative AD processes rather than

by global cerebrovascular lesion spanning both cholinergic and

non-cholinerigic systems. To better understand the “additive”

hypothesis, let us consider the example of two MCI subjects

with the same level of cognitive impairment but very different

levels of global cerebrovascular lesion: one MCI subject with

a high level of cerebrovascular lesion and the other MCI sub-

ject with a low level of cerebrovascular lesion. In line with the

“additive” hypothesis, the MCI subject having a high level of

global cerebrovascular lesion is expected to present a low level

of neurodegenerative AD lesion (including cholinergic systems)

when compared to the MCI subject having a low level of global

cerebrovascular lesion. Since EEG rhythms are supposed to be

markedly affected by neurodegenerative AD lesion (including

cholinergic lesion), we predict that the MCI subject with high

level of global cerebrovascular lesion (and expected low level of

neurodegenerative AD-cholinergic lesion) presents better EEG

rhythms than the MCI subject with low level of global cere-

brovascular lesion (and expected high level of neurodegenerative

AD-cholinergic lesion) does.

To test the “additive” hypothesis, here awakening eyes-closed

EEG data were recorded in Nold, MCI, and AD subjects. In the

MCI subjects, white-matter global cerebrovascular lesion was

quantified based on magnetic resonance imaging (MRI), and

was related to cortical sources of EEG rhythms. The MCI sub-

jects were subdivided in two sub-groups: MCI with low degree

of white-matter lesion (MCI V+) and MCI with high degree

of white-matter lesion (MCI V−). It was predicted that: (a)

the posterior cortical sources of alpha rhythms were stronger

in the MCI V+ compared to the MCI V− group and (b) the

posterior cortical sources of alpha rhythmswere positively corre-

lated with white-matter vascular lesion across all MCI subjects.

Differences between the MCI V+ and MCI V− groups in the

other EEG frequency bands were also tested for control pur-

poses.

2. Methods

2.1. Subjects and diagnostic criteria

In this study, 80 MCI subjects (63% amnesic) were enrolled. Furthermore,

40 Alzheimer’s disease patients (AD) and 40 cognitively normal elderly (Nold)

subjects were recruited to form control groups. Part of the individual data sets

was used for previous EEG studies (Babiloni, Binetti, et al., 2004; Babiloni,

Benussi, Binetti, Bosco, et al., 2006; Babiloni, Benussi, Binetti, Cassetta, et al.,

2006; Babiloni, Binetti, Cassarino, et al., 2006; Babiloni, Binetti, Cassetta, et

al., 2006; Babiloni, Cassetta, et al., 2006; Babiloni, Frisoni, et al., 2006) never

dealing with the evaluation of the relationships between sources of EEG and

white-matter vascular load.

Local institutional ethics committees approved the study. All experiments

were performed with the informed and overt consent of each participant or

caregiver, in linewith theCode of Ethics of theWorldMedicalAssociation (Dec-

laration of Helsinki) and the standards established by the Author’s Institutional

Review Board.

The present inclusion and exclusion criteria for the MCI condition were

based on previous seminal studies (Devanand, Folz, Gorlyn, Moeller, & Stem,

1997; Flicker, Ferris, & Reisberg, 1991; Rubin, Morris, Grant, & Vendegna,

1989; Zaudig, 1992) defining elderly persons with objective cognitive deficits,

especially in the memory domain, who did not meet criteria for a diagnosis

of dementia. These criteria were as follows: (i) objective memory impairment

on neuropsychological evaluation, as defined by performances ≥1.5 standard

deviation below the mean value of age and education-matched controls for a

test battery including Memory Rey tests; (ii) normal activities of daily living as

documented by the history and evidence of independent living; and (iii) clinical

dementia rating score of 0.5. The exclusion criteria for MCI included: (i) mild

AD, as diagnosed by the procedures described below; (ii) evidence of concomi-

tant dementia such as frontotemporal, vascular dementia, reversible dementias

including pseudo-depressive dementia (i.e. all patients have been followed reg-

ularly every 6 months with a telephone interview and annually with a full

clinical assessment. Length of follow-up averages about 3 years), fluctuations

in cognitive performance, and/or features of mixed dementias; (iii) evidence

of concomitant extra-pyramidal symptoms; (iv) clinical and indirect evidence

of depression as revealed by Geriatric Depression Scale scores >13 (Babiloni,

Benussi, Binetti, Bosco, et al., 2006; Babiloni, Benussi, Binetti, Cassetta, et al.,

2006; Babiloni, Binetti, Cassarino, et al., 2006; Babiloni, Binetti, Cassetta, et

al., 2006; Babiloni, Cassetta, et al., 2006; Babiloni, Frisoni, et al., 2006; Burke,

Houston, Boust, & Roccaforte, 1989; Burke, Nitcher, Roccaforte, & Wengel,

1992; Gilley &Wilson, 1997; Nitcher, Burke, Roccaforte, &Wengel, 1993); (v)

other psychiatric diseases, epilepsy, drug addiction, alcohol dependence, and use

of psychoactive drugs including acetylcholinesterase inhibitors or other drugs

enhancing brain cognitive functions; and (vi) current or previous uncontrolled or

complicated systemic diseases (including diabetes mellitus) or traumatic brain

injuries.

A battery of neuropsychological tests was performed to assess cognitive

performance in the domains of memory, language, executive function/attention,

and visuo-construction abilities. The tests to assess memory were the immediate

and delayed recall measure of the ReyAuditoryVerbal Learning Test (Carlesimo

et al., 1996;Rey, 1958), the delayed recall of Reyfigures (Rey, 1968), the delayed

recall of a three-word list (Chandler et al., 2004), and the delayed recall of a story

(Spinnler & Tognoni, 1987). The tests to assess language were the 1-min verbal

fluency for letters (Novelli, 1986), the 1-min verbal fluency for fruits, animals

or car trades (Novelli, 1986), and the Token test (De Renzi & Vignolo, 1962;

Spinnler & Tognoni, 1987). The tests to assess executive function and attention

were the Trail Making Test part A and B (Reitan, 1958), the Digit forward, the

Digit backward (Orsini et al., 1987), and the attentional matrices (Spinnler &

Tognoni, 1987). Finally, the tests to assess visuo-construction were the copy of

Rey figures (Rey, 1968), the Raven of Progressive matrices (Raven, 1965), and

the Clock Drawing test (Shulman, Gold, Cohen, & Zucchero, 1993).

Probable AD was diagnosed according to NINCDS-ADRDA (McKhann et

al., 1984). Patients underwent general medical, neurological and psychiatric

assessments and were also rated with a number of standardized diagnostic and

severity instruments that includedMMSE (Folstein, Folstein,&McHugh, 1975),

Clinical Dementia Rating Scale (Hughes, Berg, Danziger, Coben, & Martin,

1982), Geriatric Depression Scale (Yesavage et al., 1983), Hachinski Ischemic
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Scale (Rosen, Terry, Fuld, Katzman, & Peck, 1980), and Instrumental Activi-

ties of Daily Living Scale (Lawton & Brodie, 1969). Neuroimaging diagnostic

procedures (CT or MRI) and complete laboratory analyses were carried out to

exclude other causes of progressive or reversible dementias (see above for cri-

teria), in order to have a homogenous mild AD patient sample. The exclusion

criteria included, in particular, any evidence of: (i) frontotemporal dementia

diagnosed according to criteria of Lund and Manchester Groups (1994); (ii)

vascular dementia as diagnosed according to NINDS-AIREN criteria (Roman

et al., 1993); (iii) extra-pyramidal syndromes; (iv) reversible dementias; (v)

clinical and indirect evidence of depression as revealed by Geriatric Depression

Scale scores >13; and (vi) Lewy body dementia according to the criteria by

McKeith et al. (1999). The detection of the vascular component in dementia and

MCI was accounted based on previous theoretical guidelines from our research

network (Frisoni et al., 1995; Geroldi, Galluzzi, Testa, Zanetti, & Frisoni, 2003;

Galluzzi, Sheu, Zanetti, & Frisoni, 2005). Furthermore, the above neuropsy-

chological tests were performed on the AD subjects. Of note, benzodiazepines,

antidepressant and/or antihypertensive drugs when present, were withdrawn for

about 24 h before the EEG recordings.

The Nold subjects were recruited mostly among non-consanguineous

patients’ relatives. All Nold subjects underwent physical and neurological exam-

inations as well as cognitive screening. Subjects affected by chronic systemic

illnesses, subjects receiving psychoactive drugs, and subjects with a history of

present or previous neurological or psychiatric disease were excluded. All Nold

subjects had a Geriatric Depression Scale score <13 (no depression).

2.2. Magnetic resonance imaging (MRI)

High-resolution sagittal T1-weighted volumetric MRIs were acquired in

MCI subjects using a 1.0 T Magnetom scanner (Siemens, Erlangen, Germany),

with a gradient echo 3D technique: TR= 10ms, TE= 4ms, TI = 300ms, flip

angle = 10◦, field of view= 250mm, acquisition matrix 160× 256, and a slice

thickness of 1.3mm.

In order to rate the subcortical vascular lesions (SVLs), an expert operator

(R.R.), blind to the clinical conditions or history of falls of subjects, visually

assessed digital MRI images of MCI subjects (Geroldi et al., 2006). SVLs were

scored separately for the right and left hemispheres in five regions (frontal,

temporal, parieto-occipital, basal ganglia, cerebellum and subtentorial areas) as

0 (no lesions), 1 (focal lesions), 2 (beginning confluence of lesions) and 3 (diffuse

involvement of the entire region). A sum score was computed with theoretical

score = ranging between 0 and 30 (Inter Rater Reliability 0.95). Subcortical

vascular disease (SVD) was considered as present when the Wahlunds scale

total score was 6 or more, or when beginning confluence of lesions (score 2)

was observed in at least one region. TheMRI data of a MCI subject could not be

used for technical problems, so that the final group of MCI subjects was formed

by 79 subjects. Of note, a rater reliability higher than 0.95 was obtained with

reference to the evaluation of the operator in a second session in which the MRI

images were rated again.

2.3. Composition of the experimental groups of MCI subjects

Based on the Wahlund scale score, the MCI subjects were subdivided in

two sub-groups: 37 with low degree of white-matter lesion (MCI V−, score

of Wahlund scale <3; mean 0.8± 1.2 standard error, S.E.) and 42 with high

degree of white-matter lesion (MCI V+, score of Wahlund scale ≥3; mean

6.9± 0.5S.E.). Of note, a cut-off of three for Wahlund scale score was cho-

sen to subdivide MCI subjects in two sub-groups having a similar number of

subjects and MMSE score (26.7 for MCI V−, 26 for MCI V+). The percentage

of the amnesic subjects was 57% in the MCI V− group and 69% in the MCI

V+ group. An ANOVA using the factor Group (MCI V−, MCI V+) was per-

formed to evaluate the presence or absence of statistically significant differences

among the MCI V− and MCI V+ groups as percentage of the amnesic sub-

jects. No statistically significant difference was found (p> 0.25). Furthermore,

the Chi-square distribution showed a higher statistically significant percentage

of amnesic than non-amnesic MCI subjects for both groups (MCI V−: Chi-

square = 28.8, p< 0.00001; MCI V+: Chi-square = 32.3, p< 0.00001). Table 1

summarizes the relevant demographic and clinical data of the Nold, MCI V−,

MCI V+, and AD participants. Four ANOVAs using the factor Group (Nold,

MCI V−, MCI V+, and AD) were computed to evaluate the presence or absence

of statistically significant differences among the Nold, MCI V−, MCI V+, and

AD groups for the subjects’ age, education, gender, and MMSE. No statis-

tically significant differences for the education (p> 0.5) and gender (p> 0.4)

were found. On the contrary, the ANOVA for the age showed a statistically

significant difference (F(3,155) = 2.67; p< 0.05), indicating that the age was

higher in the MCI V+ compared to the MCI V− group (p< 0.03). Similarly,

as expected, the ANOVA for the MMSE showed a statistically significant dif-

ference (F(3,155) = 106; p< 0.0001), indicating that the MMSE values were

higher in the Nold group compared to the MCI V−, MCI V+ and Nold groups

(p< 0.0002) as well as in the MCI V− and MCI V+ groups compared to the AD

group (p< 0.00001). Of note, the subjects’ age, education, and gender were used

as covariates in the statistical evaluation of the cortical sources of EEG rhythms,

to remove possible confounding effects.

2.4. EEG recordings

EEG data was recorded by specialized clinical units in Nold, MCI V−, MCI

V+, and mild AD subjects at resting state (eyes-closed). EEG recordings were

performed (0.3–70Hz bandpass; cephalic reference) from 19 electrodes posi-

tioned according to the International 10–20 System (i.e. Fp1, Fp2, F7, F3, Fz,

F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2). To monitor eye move-

ments, the horizontal and vertical electrooculogram (0.3–70Hz bandpass) was

also collected. All data were digitized in continuous recording mode (5min of

EEG; 128–256Hz sampling rate). Recordings were performed in the late morn-

ing. In order to keep constant the level of vigilance, an experimenter controlled

on-line the subject and the EEG traces. He verbally alerted the subject any time

there were signs of behavioral and/or EEG drowsiness.

The recorded EEG data were analyzed and fragmented off-line in consecu-

tive epochs of 2 s. On average, 150 EEG epochs (5min) for each subject were

examined. The EEG epochs with ocular, muscular, and other types of artifact

were preliminary identified by a computerized automatic procedure. The EEG

epochs with sporadic blinking artifacts (less than 10% of the total) were cor-

rected by an autoregressive method (Moretti et al., 2003). In brief, this method

subtracted the projection of EOG artefacts on EEG data based on the estimation

of weights performed by an autoregressive technique (Moretti et al., 2003). Two

independent experimenters blind to the diagnosis manually confirmed the EEG

segments accepted for further analysis. Of note, a special attention was devoted

to avoid the inclusion of EEG segments and individual data sets with EEG signs

of drowsiness or pre-sleep stages. Furthermore, the experimenters were blind to

the diagnosis of the subjects at the moment of the preliminary EEG data analy-

Table 1

Demographic data of healthy elderly (Nold), mild cognitive impairment (MCI), and mild Alzheimer’s disease (AD) subjects

Nold MCIV− MCIV+ AD p-Value (ANOVA)

N 40 37 42 40

Age 69.1 (±1.4S.E.) 68.5 (±1.4S.E.) 72.6 (±1S.E.) 71.4 (±1.2S.E.) <0.05

Education 7.6 (±0.7S.E.) 7.7 (±0.8S.E.) 7.1 (±0.5S.E.) 7.4 (±0.6S.E.) >0.5

Gender (F/M) 22/18 24/13 23/19 23/17 >0.4

MMSE 28.4 (±0.2S.E.) 26.7 (±0.3S.E.) 26 (±0.3S.E.) 20.4 (±0.5S.E.) <0.001

Of note, MCI group was divided in two sub-groups: MCI subjects with low degree of cerebrovascular lesion of the white matter (MCI V−, score of Wahlund scale

<3) and MCI subjects with high degree of cerebrovascular lesion of the white matter (MCI V+, score of Wahlund scale≥3). p-Values ranged from 0 to 1 with cut-off

for significance at 0.05.
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sis. At the end of the preliminary EEG data analysis, the mean of the individual

artifact-free EEG epochs lasting 2 s was 122 (±4S.E.) in the Nold subjects, 115

(±5S.E.) in the MCI V− subjects, 120 (±3S.E.) in the MCI V+ subjects, and

111 (±4S.E.) in the AD patients. This means that there was a sufficient amount

of 2 s-EEG epochs for further EEG data analysis. Of note, an ANOVA using

the factor Group (Nold, MCI V−, MCI V+, and AD) served to compare the

amount of artifact-free EEG epochs among the Nold, MCI V−, MCI V+, and

AD groups. No statistically significant difference was found (p> 0.2).

2.5. Spectral analysis of the EEG data

A digital FFT-based power spectrum analysis (Welch technique, Hanning

windowing function, no phase shift) computed power density of the EEG

rhythmswith 0.5Hz frequency resolution. The following standard band frequen-

cies were studied: delta (2–4Hz), theta (4–8Hz), alpha 1 (8–10.5Hz), alpha 2

(10.5–13Hz), beta 1 (13–20Hz), beta 2 (20–30Hz) and gamma (30–40Hz).

These band frequencies were chosen averaging those used in previous relevant

EEG studies on dementia (Babiloni, Binetti, et al., 2004; Babiloni, Benussi,

Binetti, Bosco, et al., 2006; Babiloni, Benussi, Binetti, Cassetta, et al., 2006;

Babiloni, Binetti, Cassarino, et al., 2006; Babiloni, Binetti, Cassetta, et al., 2006;

Babiloni, Cassetta, et al., 2006; Babiloni, Frisoni, et al., 2006; Jelic, Shigeta, &

Julin, 1996; Rodriguez, Copello, et al., 1999; Rodriguez, Nobili, et al., 1999).

Sharing of a frequency bin by two contiguous bands is a widely accepted proce-

dure (Besthorn et al., 1997; Cook & Leuchter, 1996; Kolev, Yordanova, Basar-

Eroglu, & Basar, 2002; Leuchter et al., 1993; Nobili et al., 1998; Pucci et al.,

1997). Furthermore, this fits the theoretical consideration that near EEG rhythms

mayoverlap at their frequency borders (Babiloni, Babiloni, et al., 2004;Babiloni,

Miniussi, et al., 2004; Klimesch, 1996, 1999; Klimesch et al., 1997, 1998).

Choice of the fixed EEG bands did not account for individual alpha fre-

quency (IAF) peak, defined as the frequency associated with the strongest EEG

power at the extended alpha range (Klimesch, 1999). However, this should not

affect the results, since most of the subjects had IAF peaks within the alpha

1 band (8–10.5Hz). In particular, mean IAF peak was 9.4Hz (±0.2 standard

error, S.E.) in Nold subjects, 9.4Hz (±0.2S.E.) in MCI V− subjects, 9.3Hz

(±0.2S.E.) in MCI V+ subjects, and 8.5Hz (±0.2S.E.) in AD patients. An

ANOVA served to compare IAF peak values among the Nold, MCI V−, MCI

V+, and AD groups. The ANOVA showed a statistically significant difference

(F(3,155) = 5.11; p< 0.002), indicating that the mean IAF peak was lower in the

AD group compared to the Nold, MCI V−, and MCI V+ groups (p< 0.004).

Although no statistically significant difference was observed between the MCI

V− andMCIV+ groups (p> 0.6), the IAF peakwas used as a covariate (together

with age, education and gender) for further statistics.

The analysis of the delta band was restricted to 2–4Hz for homogeneity with

previously quoted field literature and to avoid the residual effects of uncontrolled

headmovements—provoking artifacts in the lower delta band- especially inMCI

and AD subjects.

2.6. Cortical source analysis of the EEG rhythms by LORETA

Low resolution electromagnetic source tomography (LORETA) was used

for the EEG source analysis as provided at http://www.unizh.ch/keyinst/

NewLORETA/LORETA01.htm (Pascual-Marqui, Esslen, Kochi, & Lehmann,

2002; Pascual-Marqui &Michel, 1994). LORETA is a functional imaging tech-

nique belonging to a family of linear inverse solution procedures (Valdès et al.,

1998) modeling 3D distributions of EEG sources (Pascual-Marqui et al., 2002).

With respect to the dipole modeling of cortical sources, no a priori decision of

the dipole position is required by the investigators in LORETA estimation. In a

previous review paper, it has been shown that it was quite efficient when com-

pared to other linear inverse algorithms like minimum norm solution, weighted

minimum norm solution or weighted resolution optimization (Phillips, Rugg,

& Friston, 2002; Yao & He, 2001). Finally, LORETA has been successfully

used in recent EEG studies on pathological brain aging (Babiloni, Binetti, et al.,

2004; Babiloni, Benussi, Binetti, Bosco, et al., 2006; Babiloni, Benussi, Binetti,

Cassetta, et al., 2006; Babiloni, Binetti, Cassarino, et al., 2006; Babiloni, Binetti,

Cassetta, et al., 2006; Babiloni, Frisoni, et al., 2006; Dierks et al., 2000).

LORETA computes 3D linear solutions (LORETA solutions) for the EEG

inverse problemwithin a three-shell spherical headmodel including scalp, skull,

and brain compartments. The brain compartment is restricted to the cortical gray

matter/hippocampus of a head model co-registered to the Talairach probability

brain atlas and digitized at the Brain Imaging Center of the Montreal Neurolog-

ical Institute (Talairach & Tournoux, 1988). This compartment includes 2394

voxels (7mm resolution), each voxel containing an equivalent current dipole.

LORETA can be used from EEG data collected by low spatial sampling of

10–20 system (19 electrodes) when cortical sources are estimated from resting

EEG rhythmst, since these rhythms are generated by largely distributed corti-

cal sources that can be accurately investigated by this way (Anderer, Saletu,

& Pascual-Marqui, 2000; Anderer, Saletu, Semlitsch, & Pascual-Marqui, 2003;

Babiloni, Binetti, et al., 2004; Babiloni, Benussi, Binetti, Bosco, et al., 2006;

Babiloni, Benussi, Binetti, Cassetta, et al., 2006; Babiloni, Binetti, Cassarino,

et al., 2006; Babiloni, Binetti, Cassetta, et al., 2006; Babiloni, Frisoni, et al.,

2006; Laufer & Pratt, 2003a, 2003b; Mulert et al., 2001; Veiga et al., 2003;

Winterer et al., 2001). LORETA solutions consisted of voxel z-current density

values able to predict EEG spectral power density at scalp electrodes, being a

reference-free method of EEG analysis, in that one obtains the same LORETA

source distribution for EEG data referenced to any reference electrode includ-

ing common average. A normalization of the data was obtained by normalizing

the LORETA current density at each voxel with the power density averaged

across all frequencies (0.5–45Hz) and across all 2394 voxels of the brain vol-

ume. After the normalization, the solutions lost the original physical dimension

and were represented by an arbitrary unit scale. This procedure reduced inter-

subjects variability and was used in previous EEG studies (Babiloni, Binetti,

et al., 2004; Babiloni, Benussi, Binetti, Bosco, et al., 2006; Babiloni, Benussi,

Binetti, Cassetta, et al., 2006; Babiloni, Binetti, Cassarino, et al., 2006; Babiloni,

Binetti, Cassetta, et al., 2006; Babiloni, Frisoni, et al., 2006). The general pro-

cedure fitted the LORETA solutions in a Gaussian distribution and reduced

inter-subject variability (Leuchter et al., 1993; Nuwer, 1988).

Solutions of the EEG inverse problem are under-determined and ill condi-

tioned when the number of spatial samples (electrodes) is lower than that of

the unknown samples (current density at each voxel). To account for that, the

cortical LORETA solutions predicting scalp EEG spectral power density were

regularized to estimate distributed rather than punctual EEG source patterns

(Pascual-Marqui & Michel, 1994). In line with the low spatial resolution of the

adopted technique, a home-made MATLAB software averaged the amplitude

of LORETA solutions for all voxels belonging to each macroregion of interest

such as frontal, central, parietal, occipital, temporal, and limbic. Each of these

macroregions of interest (ROIs) was constituted by all the voxels of the Brod-

mann areas listed in Table 2. The belonging of a LORETA voxel to a Brodmann

area was defined by original LORETA package.

Finally, the main advantage of the regional analysis of LORETA solutions

– using an explicit source model coregistered into Talairach space – was that

our modeling could disentangle rhythms of contiguous cortical areas (namely

those from the occipital source were disentangled with respect to those of the

contiguous parietal and temporal sources, etc.).

2.7. Statistical analysis of the LORETA solutions

The main statistical analysis aimed at evaluating two working hypotheses.

The first hypothesis was that cortical sources of EEG rhythms as revealed by the

regional normalized LORETA solutions had difference in amplitude among the

Table 2

Brodmann areas included in the cortical regions of interest (ROIs) of the present

study

LORETA Brodmann areas into the regions of interest (ROIs)

Frontal 8, 9, 10, 11, 44, 45, 46, 47

Central 1, 2, 3, 4, 6

Parietal 5, 7, 30, 39, 40, 43

Temporal 20, 21, 22, 37, 38, 41, 42

Occipital 17, 18, 19

Limbic 31, 32, 33, 34, 35, 36

LORETA solutions were collapsed in frontal, central, parietal, occipital, tempo-

ral and limbic ROIs.
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Nold, MCI V−, MCI V+, and AD subjects. To this aim, the regional normalized

LORETA solutions fromNold,MCIV−, MCIV+ andAD subjects were used as

an input for a MANOVA. Subjects’ age, education, gender and IAF peak served

as covariates. Mauchly’s test evaluated the sphericity assumption. Correction of

the degrees of freedom was made with the Greenhouse–Geisser procedure. The

MANOVA used the factors Group (Nold, MCI V−, MCI V+, AD; independent

variable), Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma), and ROI

(central, frontal, parietal, occipital, temporal, limbic). The first hypothesis would

be confirmed by the following two statistical results: (i) a statistical MANOVA

effect including the factor Group (p< 0.05); and (ii) a post hoc test indicating sta-

tistically significant differences of the (LORETA) EEG sources with the pattern

Nold 6=MCI V− 6=MCI V+ 6=AD (Duncan test, p< 0.05).

The second hypothesis regarded the correlation between white-matter vas-

cular lesion and the regional normalized LORETA solutions in theMCI subjects

considered as a single group (i.e.MCIV− plusMCIV+ subjects). This hypothe-

siswould be confirmedby statistically significant correlations (partial correlation

analysis, Bonferroni corrected, p< 0.05) between the Wahlund scale score and

the amplitude of the regional normalized LORETA solutions. Of note, only

the regional normalized LORETA solutions fitting the pattern Nold 6=MCI

V− 6=MCI V+ 6=AD were considered for that correlation analysis. Age and

education were used as confound variables.

3. Results

3.1. Topography of the EEG cortical sources as estimated

by LORETA

For illustrative purposes, Fig. 1maps the grand average of the

LORETA solutions (i.e. relative current density at cortical vox-

els) modeling the distributed EEG sources for delta, theta, alpha

1, alpha 2, beta 1, beta 2 and gamma bands in the Nold, MCI

V−,MCIV+, andADgroups. TheNold group presented alpha 1

sourceswith themaximal values of amplitude distributed in pari-

etal and occipital regions. Delta, theta, and alpha 2 sources had

moderate amplitude values when compared to alpha 1 sources.

Furthermore, beta 1, beta 2 and gamma sources were character-

ized by lowest amplitude values. Compared to the Nold group,

both MCI V− and MCI V+ groups showed a decrease in ampli-

tude of the parietal, occipital and temporal alpha 1 sources. This

decrement was stronger in the MCI V− than MCI V+ group.

With respect to the Nold andMCI groups, the AD group showed

an amplitude increase of widespread delta sources, along with a

strong amplitude reduction of parieto-occipital alpha 1 sources.

Finally, there were relatively high values of the theta sources in

the AD group.

3.2. Statistical comparisons of LORETA EEG sources

Fig. 2 shows mean regional normalized LORETA solutions

(distributed EEG sources) relative to a statistical MANOVA

interaction (F(90,4650) = 7.7; M.S.E. = 0.5; p< 0.0001) among

the factors Group (Nold, MCI V−, MCI V+, AD), Band (delta,

theta, alpha 1, alpha 2, beta 1, beta 2, gamma), and ROI (central,

frontal, parietal, occipital, temporal, limbic). In the figure, the

LORETA solutions had the shape of EEG relative power spectra.

Notably, profile andmagnitude of these spectra in theNold,MCI

Fig. 1. Grand average of LORETA solutions (i.e. normalized relative current density at the cortical voxels) modeling the distributed EEG sources for delta, theta,

alpha 1, alpha 2, beta 1, beta 2, and gamma bands in Nold, MCI V− (score of Wahlund scale <3), MCI V+ (score of Wahlund scale ≥3), and AD groups. The left

side of the maps (top view) corresponds to the left hemisphere. Legend: LORETA, low resolution brain electromagnetic tomography. Color scale: All power density

estimates were scaled based on the averaged maximum value (i.e. alpha 1 power value of occipital region in Nold). The maximal value of power density is reported

under each column.
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Fig. 2. Regional normalized LORETA solutions (mean across subjects) relative to a statistical MANOVA interaction among the factors Group (Nold, MCI V−,

MCI V+, AD), Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma), and ROI (frontal, central, parietal, occipital, temporal, limbic). This MANOVA design

used the regional normalized LORETA solutions as a dependent variable. Subjects’ age, education, gender and individual alpha frequency peak (IAF) were used as

covariates. Regional normalized LORETA solutions modeled the EEG relative power spectra as revealed by a sort of “virtual” intracranial macro-electrodes located

on the macrocortical regions of interest. Legend: The rectangles indicate the cortical regions and frequency bands in which LORETA solutions presented statistically

significant LORETA patterns Nold 6=MCI V− 6=MCI V+ 6=AD (p< 0.05).

V−, MCI V+, and AD groups differed across diverse cortical

macro-regions, thus supporting the idea that scalp EEG rhythms

are generated by a distributed pattern of cortical sources. The

source pattern Nold 6=MCI V− 6=MCI V+ 6=AD was fitted by

the following three regional normalized LORETA solutions:

parietal, occipital, and temporal alpha 1 sources (p< 0.001).

These alpha 1 sources showed stronger amplitude in the Nold

compared to the MCI V+ group (p< 0.0001), in the MCI V+

compared to theMCI V− group (p< 0.001), and in theMCI V−

compared to the AD group (p< 0.0001). No differences between

the MCI V− and MCI V+ groups in the other bands (delta,

theta, alpha 2, beta 1, beta 2, gamma, p> 0.05) were found.

Furthermore, the amplitude of delta (frontal, central, parietal,

occipital, temporal and limbic areas) sources was stronger in

the AD group compared to the MCI V+, MCI V−, and Nold

groups (p< 0.0001). Moreover, the amplitude of theta sources

was stronger in the AD group compared to the Nold (frontal

areas, p< 0.03), MCI V+, and MCI V− groups (frontal, occip-

ital, temporal and limbic areas, p< 0.04). Table 3 reports post

hoc results for all ROIs, band, and groups. Finally, the statistical

results for parietal, occipital, and temporal alpha 1 sources were

also confirmed with hierarchical linear analysis (p< 0.00006).

The three mentioned normalized regional LORETA sources

(parietal, occipital, and temporal alpha 1 sources) were then

used as an input for the correlation with the score of Wahlund

scale in the MCI V− and MCI V+ subjects as a single group

(partial correlation analysis; age and education as confound vari-

ables). Bonferroni correction for the three regional normalized

LORETA solutions gave the threshold p< 0.017, to obtain the

Bonferroni corrected p< 0.05. A marginal statistical correlation

was found between the parietal alpha 1 sources and the score

of Wahlund scale (r= 0.23, p= 0.04). This marginal positive

correlation was also confirmed at the Spearman test (r= 0.27,

p= 0.04). Fig. 3 shows the scatterplot of that correlation. Of

note, the mentioned correlation was not merely due to the pres-

ence of outliers as revealed by the following control analysis.

In this analysis, 4 outliers out of the 79 MCI subjects were

excluded; they were defined as the subjects having the extreme

values within the group distribution. Without the outliers, the

correlation was still statistically significant (r= 0.26; p< 0.05),

confirming the main results.

3.3. Control analyses

As previously mentioned, the parietal, occipital, and tem-

poral alpha 1 LORETA sources fitted the pattern Nold 6=MCI

V− 6=MCI V+ 6=AD. These three regional normalized

LORETA sources were used as an input for the correlation with

the score of Wahlund scale in the MCI subjects. A marginal

statistical correlation was found between the parietal alpha 1
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Table 3

Post hoc results for the delta, theta, alpha 1, alpha 2, beta 1, beta 2, and gamma sources

Duncan post HOC testing (p-value)

Central Frontal Parietal Occipital Temporal Limbic

delta

Nold vs. MCI V− 0.6− 0.5− 0.9+ 0.04+ 0.9− 0.8−

Nold vs. MCI V+ 0.6+ 0.4+ 0.9+ 0.06+ 0.8+ 0.5+

Nold vs. AD 0.0001− 0.0001− 0.0001− 0.0001− 0.0001− 0.0001−

MCI V− vs. MCI V+ 0.3+ 0.1+ 0.9+ 0.8− 0.8+ 0.4+

MCI V− vs. AD 0.0001− 0.0001− 0.0001− 0.0001− 0.0001− 0.0001−

MCI V+− vs. AD 0.0001− 0.0001− 0.0001− 0.0001− 0.0001− 0.0001−

theta

Nold vs. MCI V− 0.7− 0.8− 0.9+ 0.001+ 0.9+ 0.3+

Nold vs. MCI V+ 0.8− 0.7+ 0.9+ 0.001+ 0.6+ 0.2+

Nold vs. AD 0.9− 0.03− 0.9− 0.9− 0.1− 0.1−

MCI V− vs. MCI V+ 0.9+ 0.6+ 0.6− 0.7− 0.9− 0.8−

MCI V− vs. AD 0.1− 0.04− 0.06− 0.001− 0.02− 0.008−

alpha 1

Nold vs. MCI V− 0.2+ 0.2+ 0.0001+ 0.0001+ 0.0001+ 0.0001+

Nold vs. MCI V+ 0.9+ 0.3+ 0.0001+ 0.0001+ 0.0001+ 0.0001+

Nold vs. AD 0.01+ 0.9+ 0.0001+ 0.0001+ 0.0001+ 0.0001+

MCI V− vs. MCI V+ 0.2− 0.8− 0.0001− 0.0001− 0.001− 0.06−

MCI V− vs. AD 0.6+ 0.9+ 0.0001+ 0.0001+ 0.0001+ 0.07+

MCI V + vs. AD 0.001+ 0.9+ 0.0001+ 0.0001+ 0.0001+ 0.0001+

alpha 2

Nold vs. MCI V− 0.4− 0.8− 0.2+ 0.0001+ 0.9+ 0.4+

Nold vs. MCI V+ 0.2− 0.7− 0.9− 0.0001+ 0.7− 0.6+

Nold vs. AD 0.9+ 0.9− 0.0001+ 0.0001+ 0.001+ 0.02+

MCI V− vs. MCI V+ 0.7− 0.9− 0.1− 0.6− 0.3− 0.8−

MCI V− vs. AD 0.6+ 0.1+ 0.0001+ 0.003+ 0.01+ 0.2+

MCI V+− vs. AD 0.02+ 0.9+ 0.0001+ 0.0005+ 0.0003+ 0.1+

beta 1

Nold vs. MCI V− 0.5− 0.9− 0.7+ 0.2+ 0.6+ 0.8+

Nold vs. MCI V+ 0.3− 0.5− 0.8− 0.2+ 0.5− 0.9−

Nold vs. AD 0.9+ 0.9+ 0.03+ 0.02+ 0.1+ 0.9+

MCI V− vs. MCI V+ 0.8− 0.6− 0.5− 0.6+ 0.3− 0.8−

MCI V− vs. AD 0.1+ 0.9+ 0.1+ 0.9+ 0.9+ 0.9+

MCI V+− vs. AD 0.1+ 0.9+ 0.02+ 0.9+ 0.03+ 0.9+

beta 2

Nold vs. MCI V− 0.3− 0.8− 0.6− 0.9+ 0.9+ 0.8−

Nold vs. MCI V+ 0.2− 0.3− 0.5− 0.9+ 0.1− 0.5−

Nold vs. AD 0.9+ 0.5+ 0.9+ 0.9+ 0.3+ 0.8+

MCI V− vs. MCI V+ 0.8− 0.5− 0.8− 0.9− 0.1− 0.7−

MCI V− vs. AD 0.1+ 0.9+ 0.1+ 0.9+ 0.9+ 0.9+

MCI V+− vs. AD 0.06+ 0.3+ 0.1+ 0.10+ 0.01+ 0.9+

gamma

Nold vs. MCI V− 0.6− 0.7− 0.7− 0.8− 0.5− 0.7−

Nold vs. MCI V+ 0.3− 0.5− 0.5− 0.7− 0.02− 0.5−

Nold vs. AD 0.9+ 0.9− 0.7+ 0.9+ 0.9+ 0.9+

MCI V− vs. MCI V+ 0.8− 0.5− 0.7− 0.8− 0.1− 0.7−

MCI V− vs. AD 0.5+ 0.9+ 0.5+ 0.5+ 0.9+ 0.7+

MCI V+− vs. AD 0.4+ 0.3+ 0.4+ 0.4+ 0.01+ 0.5+

These results refer to mean regional normalized LORETA solutions (distributed EEG sources) relative to a statistical MANOVA interaction (F(90,4650) = 7.7;

M.S.E. = 0.5; p< 0.0001) among the factors Group (Nold, MCI V−, MCI V+, AD), Band (delta, theta, alpha 1, alpha 2, beta 1, beta 2, gamma), and ROI (central,

frontal, parietal, occipital, temporal, limbic).

sources and the score of Wahlund scale (r= 0.23, p= 0.04).

A first control analysis evaluated the partial correlations

between the Wahlund scale score and the amplitude of 39

regional normalized LORETA solutions (i.e. cortical regions

of interest×EEG frequencies). Bonferroni correction for the

39 regional normalized LORETA solutions gave the threshold

p< 0.0001, to obtain theBonferroni corrected p< 0.05.Marginal

positive correlations were found between the Wahlund scale

score and the amplitude of frontal (r= 0.29, p= 0.02) or central

(r= 0.24, p= 0.03) alpha 1 sources. These two correlation
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Fig. 3. Scatterplots among the parietal alpha 1 LORETA density current and the

score of Wahlund scale in MCI V− and MCI V+ subjects as a single group. The

r- and p-values refer to a partial correlation are reported within the diagram.

values were not confirmed with the ranking Spearman test

(p> 0.2) and were not further considered.

As second control analysis, the partial correlation between

white-matter vascular lesion andparietal, occipital, and temporal

alpha LORETA sources in theMCI V− andMCI V+ subjects as

separate groups was performed. Bonferroni correction for three

sources× two groups gave the threshold p< 0.008 to obtain the

Bonferroni corrected p< 0.05. No statistically significant result

was found, probably due to the fact that the correlation analysis

on each single group reduced the degrees of freedom, the range

of the values to be correlated, and then the sensitivity of the

statistical computation.

Furthermore, onemay argue that the above-mentioned results

could be merely due to different results to the neuropsycho-

logical tests between the MCI V− and MCI V+ groups. To

address this issue, a third control analysis was performed. Eigh-

teen ANOVAs (one for each neuropsychological test) using the

factor Group (MCIV−,MCIV+)were computed to evaluate the

presence or absence of statistically significant different results

between the MCI V− and MCI V+ groups to the neuropsy-

chological tests. No statistically significant difference for the

test for memory (p> 0.5), language (p> 0.15), executive func-

tion/attention (p> 0.4), and visuo-construction tests (p> 0.1)

was found.

As a fourth control analysis, the amplitude of parietal alpha

1 sources and the score of Wahlund scale were correlated to

neuropsychological measures in MCI V− andMCI V+ subjects

as a whole group. Bonferroni correction for 18 tests gave the

threshold p< 0.0026 to obtain the Bonferroni corrected p< 0.05.

No statistically significant correlation was found between the

score of Wahlund scale and the neuropsychological measures.

Instead, marginal positive correlations were observed between

the amplitude of parietal alpha 1 sources and the scores of Token

test (r= 0.25, p= 0.03), Raven’s Progressive Matrices (r= 0.25,

p= 0.03), and Trail Making part B (r=−0.3, p= 0.008).

As fifth control analysis, a MANOVA tested the hypothesis

that the differences of regional normalized LORETA solutions

among MCI V−, MCI V+, and mild AD groups were not due

to the subjects’ age, education, gender, and MMSE. We con-

sidered two sub-groups of the MCI V− (N= 17) and MCI V+

(N= 17) subjects having practically equal age (MCI V−: 70.5

years; MCI V+−: 70.8 years), education (MCI V−: 7.6 years;

MCI V+−: 7.2 years), ratios of gender (MCI V−: 41% male;

MCI V+−: 43%male), andMMSE (MCI V−: 26.5; MCI V+−:

26.2). The regional normalized LORETA solutions were used as

a dependent variable. TheMANOVAfactors (levels)wereGroup

(MCI V−, MCI V+; independent analysis), Band (delta, theta,

alpha 1, alpha 2, beta 1, beta 2, gamma), and ROI (frontal, cen-

tral, parietal, occipital, temporal, limbic). There was a statistical

interaction (F(30,1860) = 1.6; M.S.E. = 0.37; p< 0.02) among

the factorsGroup, Band, andROI. TheDuncan planned post-hoc

testing showed that the regional normalized LORETA solutions

were higher in amplitude in the MCI V+ than MCI V− group at

alpha 1 (parietal, occipital, temporal, limbic areas; p< 0.00003)

and alpha 2 (parietal, occipital, temporal areas; p< 0.02) bands.

The results globally confirmed those obtained with the larger

groups. Therefore, the differences of the LORETA solutions

between the full MCI V− and MCI V+ groups were not sub-

stantially affected by the subjects’ age, education, gender and

MMSE.

4. Discussion

4.1. Methodological remarks

In the present study, the duration of the EEG record-

ings (5min) allowed the comparison of the present results

with several previous AD studies using either EEG recordings

with a global duration shorter than 5min (Babiloni, Binetti,

et al., 2004; Babiloni, Benussi, Binetti, Bosco, et al., 2006;

Babiloni, Benussi, Binetti, Cassetta, et al., 2006; Babiloni,

Binetti, Cassarino, et al., 2006; Babiloni, Binetti, Cassetta, et

al., 2006; Buchan et al., 1997; Pucci, Belardinelli, Cacchio,

Signorino, & Angeleri, 1999; Rodriguez et al., 2002; Szelies,

Mielke, Kessler, & Heiss, 1999) or about 1min (Dierks et al.,

1993, 2000). Longer EEG recordings would have reduced data

variability but increased risks for dropping vigilance and arousal.

4.2. Sources of delta and alpha rhythms change across

Nold, MCI, and AD subjects

When compared to the Nold subjects, EEG rhythms in MCI

andAD subjectswere characterized by amarked power decrease

of alpha 1 sources in parieto-occipital and temporal areas.

In AD subjects, these rhythms were also characterized by a

marked power increase of frontal, parieto-occipital, and tem-

poral delta sources in line with previous EEG studies (Babiloni,

Binetti, et al., 2004; Babiloni, Benussi, Binetti, Bosco, et al.,

2006; Babiloni, Benussi, Binetti, Cassetta, et al., 2006; Babiloni,

Binetti, Cassarino, et al., 2006; Babiloni, Binetti, Cassetta, et

al., 2006; Babiloni, Frisoni, et al., 2006; Rodriguez, Copello, et

al., 1999; Rodriguez, Nobili, et al., 1999; Wolf, Jelic, & Gertz,

2003).
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4.3. Whitematter vascular lesion and alpha EEG sources

positively correlate in MCI

As novel results, the power of temporal, parietal and occipital

low-frequency alpha sources (8–12.5Hz) was higher in theMCI

V+ than in the MCI V− group. Furthermore, a weak statistical

correlation was found between the parietal alpha 1 sources and

the score of Wahlund scale across all MCI subjects (p= 0.04).

Such a linear correlationwas relatively low (r= 0.23), thus point-

ing to a complex relationship between white-matter vascular

lesions and cortical sources of alpha rhythms in MCI subjects.

Future studies using non-linear procedures and neural artificial

networks should investigate that complex relationship.

The present results confirm the hypothesis that posterior cor-

tical alpha rhythms are more preserved in the MCI subjects in

whom the global cognitive status is impairedmore for the white-

matter vascular lesions than for the neurodegenerative processes.

In this sense, they suggest that posterior cortical alpha rhythms

might be a marker of neurodegenerative processes rather than

a marker of white-matter vascular lesions, in line with previ-

ous evidence showing that posterior cortical alpha rhythms are

more affected in AD patients than in subjects with sub-cortical

vascular dementia (Babiloni, Binetti, et al., 2004).

The results of the present study complements the recent

notion that cholinergic basal forebrain not only arouses cerebral

cortex but also contribute to event-related enhancement of cere-

bral blood flow at the basis of cognitive functions (Claassen &

Jansen, 2006). The above cholinergic-vascular explanation fits

the evidence showing that the relationships between cholinergic

tone and neurodegenerative processes in AD may be non-linear

(Babiloni, Binetti, Cassarino, et al., 2006) and might depend on

vasomotor reactivity of cerebral circulation (Claassen & Jansen,

2006; Silvestrini et al., 2006). Indeed, two studies have sug-

gested that cognitive deficits in MCI and early AD were not

associated with the loss of cholinergic levels (Davis et al., 1999;

DeKosky et al., 2002). In the first study (Davis et al., 1999),

neocortical cholinergic deficits were characteristic of severely

demented AD patients, but cholinergic deficits were not appar-

ent in individuals with mild AD. In the second study (DeKosky

et al., 2002), the cholinergic system determined compensatory

responses during early dementia (DeKosky et al., 2002). This

up-regulation was seen in frontal cortex and could be an impor-

tant factor in preventing the transition of MCI subjects to AD

(DeKosky et al., 2002). Keeping in mind these data, present

results allow a specification of cholinergic-vascular hypothesis

in AD. Health of cholinergic systems as revealed by alpha power

was not negatively correlated with diffuse white-matter vascular

lesion in MCI (i.e. higher alpha power, lower white-matter vas-

cular lesion). In contrast, as explained above, the correlationwas

positive (i.e. higher alpha power, higher white-matter vascular

lesion), showing a minor effect of cerebrovascular impairment

on cholinergic systems at the level of amnesic MCI.

The present results fully support with original EEG evidence

on amnesic MCI subjects the notion that cerebrovascular and

AD lesions represent additive or synergistic factors in the devel-

opment of cognitive impairment across AD (Regan et al., 2006;

Snowdon et al., 1997; Zekry et al., 2002).

5. Conclusions

It is an open issue if vascular and AD lesions represent addi-

tive factors in the development of MCI, as a preclinical stage of

AD at group level. In the present study, we tested the hypothesis

that EEG alpha rhythms, which are affected (i.e. decreased in

amplitude) by AD processes, are relatively preserved in MCI

subjects in whom the cognitive decline is mainly explained by

white-matter vascular load. As novel results, the amplitude of

parietal, occipital, and temporal alpha 1 sourceswas higher in the

MCIV+ (high vascular load;N= 42;MMSE= 26) thanMCIV−

group (low vascular load; N= 37; MMSE= 26.7). Furthermore,

a weak but significant (p< 0.05) positive statistical correlation

was found between the parietal alpha 1 sources and the score

of Wahlund scale across all MCI subjects (i.e. the more severe

white-matter lesions, the higher parietal alpha source power).

These results are in line with the additive model of cognitive

impairment postulating that this arises as the sum of neurode-

generative and cerebrovascular lesions.
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