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A B S T R A C T

Objective: We propose the use of a new montage for transcranial direct current stimulation (tDCS), called
concentric electrodes tDCS (CE-tDCS), involving two concentric round electrodes that may improve stim-
ulation focality.
Methods: To test efficacy and focality of CE-tDCS, we modelled the current distribution and tested phys-
iological effects on cortical excitability. Motor evoked potentials (MEPs) from first dorsal interosseous
(FDI) and abductor digiti minimi (ADM) were recorded before and after the delivery of anodal, cathodal
and sham stimulation on the FDI hotspot for 10 minutes.
Results: MEP amplitude of FDI increased after anodal-tDCS and decreased after cathodal-tDCS, support-
ing the efficacy of CE-tDCS in modulating cortical excitability. Moreover, modelled current distribution
and no significant effects of stimulation on MEP amplitude of ADM suggest high focality of CE-tDCS.
Conclusions: CE-tDCS may allow a better control of current distribution and may represent a novel tool
for applying tDCS and other transcranial current stimulation approaches.

© 2016 Elsevier Inc. All rights reserved.

Introduction

Transcranial electrical stimulation (tES) is a non-invasive tech-
nique with great potential in basic and clinical research, for
understanding the neural substrates of cognition and as a co-
adjuvant in treating brain dysfunctions. The most used tES is
transcranial direct current stimulation (tDCS), in which low inten-
sity direct current is applied to modulate cortical excitability, acting
on polarization of neurons [1–4].

A well known limitation of tDCS, as commonly employed, is its
poor stimulation focality [5]. The application of two electrodes, one
over the target area (“target” electrode) and one over a distant site
(return electrode), induces spreads of current over an extensive
portion of the brain affecting not only the area under both elec-
trodes but also the areas between them [6]. The cortical area where
the electric field is maximum depends on the location and dis-
tance of the two electrodes, and may not be directly under the active

electrode [7,8]. Additionally, the position of the return electrode de-
termines the direction of the current [9], which ultimately determines
the physiological effects of the stimulation.

The lack of focality and the stimulation of the cortex under the
return electrode associated with the standard bipolar montage was
first addressed by using a smaller target electrode or/and a larger
reference electrode [10]. More recently, a new type of montage was
proposed, called high-definition tDCS (HD-tDCS), in which the active
electrode is surrounded by several return electrodes. HD-tDCS is very
promising because it may deliver a more focal stimulation and avoid
the spreading of current over unwanted areas, as suggested by a
modelling study [5] and an experimental study with suprathreshold
transcranial electric stimulation [11]. However, there is still little
direct evidence that modulation of excitability can be obtained with
HD-tDCS [12,13]. In addition HD-tDCS requires the use of a dedi-
cated adaptor (e.g., Soterix Medical, USA) or multichannel tDCS device
(e.g., Starstim, Neuroelectrics, Spain) to distribute the current equally
among the return electrodes.

Here, we have implemented an alternative version of the HD-
tDCS montage by using two concentric electrodes (CE-tDCS) that
can be used with a standard tDCS device, and tested its focality and
efficacy on cortical excitability.
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Methods and materials

Subjects

Fifteen right-handed healthy volunteers (8 females, aged 19–
32 years) participated in the study, after giving written informed
consent. They reported no history of neurological or psychiatric dis-
orders or any contraindication for non-invasive brain stimulation
[14]. The study was approved by the Ethics Committee of IRCCS
Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy. The pro-
tocol was carried out in accordance with the approved guidelines
and with the ethical standards of the Declaration of Helsinki.

Procedure

Three testing sessions, in which either anodal (A-tDCS), cath-
odal (C-tDCS) or sham-tDCS was applied, were conducted at least
2 days apart and counterbalanced across participants. Motor evoked
potentials (MEPs) from the right first dorsal interosseous (FDI) and
from the right abductor digiti minimi (ADM) were recorded before
and after the application of tDCS over the contralateral primary motor
cortex (M1) representation (hotspot) of the FDI, while partici-
pants were comfortably seated on an armchair in dim light.

tDCS was delivered at 1 mA for 10 min (10 s ramp up/ramp down)
by a battery-driven DC stimulator (BrainStim, EMS, Italy). In the
sham-tDCS the current was ramped up and down at the begin-
ning and at the end of the session. Current was applied through two
concentric electrodes as shown in Fig. 1A and 1B (target elec-
trode: central round electrode, radius = 1.0 cm, area = 3.14 cm2; return
electrode: outer ring electrode, inner radius = 3.5 cm, outer
radius = 4.0 cm, area = 11.78 cm2). Electrodes were made of con-
ductive rubber, installed in a non-conductive silicon casing, flexible
enough to adapt the electrodes to the scalp and ensure the correct
position of the return electrode relative to the target electrode. First
we filled the electrode cage with an electroconductive gel (Elektrogel,
Italy), then positioned the electrodes, with the target electrode over
the FDI hotspot, and finally we fastened the electrodes with a tubular
net-shaped elastic bandage in mesh tissue, making sure that the it
did not push the electrode forward or backward. This procedure was
aimed at reducing contact impedance and at creating a uniform ad-
herence between the whole surface of the electrodes and the scalp,
avoiding uneven distribution of the current [15].

MEPs were collected by applying twenty single transcranial mag-
netic stimulation (TMS) pulses (every 4–8 s) over FDI and twenty
single TMS pulses over ADM, before and after tDCS. TMS intensity
was kept constant to obtain a baseline peak-to-peak MEPs of about
1 mV in the FDI (mean TMS intensity: 59.1% MSO). The position of
the coil (70 mm Figure-of-Eight, Magstim, UK) was controlled
through a neuronavigation system (SofTaxic Optic, EMS, Italy). Elec-
tromyography (EMG) was recorded from the right FDI and ADM
muscles through a belly-tendon montage, with a band-pass filter
at 0.1–1000 Hz and digitized at a sampling rate of 5000 Hz
(BrainAmp, Brain Products GmbH, Germany).

At the end of each session, the subjects were asked to com-
plete a questionnaire and give a score from 0 = none to 4 = strong
to rate their skin sensations during the stimulation [15].

Analysis and statistics

Epochs were baseline corrected to the 100 ms before the TMS
pulse, filtered with a low cutoff at 10 Hz and a notch filter at 50 Hz.
Epochs containing muscle artefacts and MEP responses smaller than
50 μV were discarded.

To test the effects of stimulation on both muscles, a repeated
measure MANOVA was run on MEP amplitude with factors stim-

ulation (A-tDCS, C-tDCS and sham-tDCS) and time (pre-TMS and
post-TMS) as within-subject factors, and with FDI and ADM as de-
pendent variables. Significant effects were followed up with separate
univariate ANOVAs for each muscle and with post-hoc compari-
sons using Fisher’s least significant difference method. The
Kolmogorov–Smirnov test was applied to assess for normal distri-
bution of variables. The Greenhouse–Geisser correction was used
when appropriate.

We analyzed skin sensations given by the stimulations by com-
paring discomfort for each stimulation condition, i.e., the global
sensation score obtained from the questionnaires (max score = 28),
with a generalized linear model with Poisson distribution, which
is suitable for discrete dependent variables.

Electric field modelling

The electric field produced by a CE-tDCS montage was first in-
vestigated by Datta et al. [7] using a spherical head model. Here,
we calculated the electric field produced by the CE-tDCS used in
our experiment in a realistic head model. This model was ob-
tained by segmenting MR images (Colin27 single-subject template
available at BrainWeb, http://brainweb.bic.mni.mcgill.ca/brainweb)
into five tissues: scalp, skull, cerebral spinal fluid (including the lateral
ventricles), white matter and grey matter, as described elsewhere
[16]. The hand knob was identified [16] and the central electrode
was placed radially over the center of the FDI representation on the
cortex, assumed to lie on the lateral part of the hand knob, as shown
in Fig. 1. The center of the ADM representation was assumed to lie
in the mesial part of the hand knob. Regions of interest (ROIs) with
1 cm radius were defined around the centers of the FDI and ADM
representations to calculate average electric field values on the cor-
tical surface.

Results and discussion

The distribution of the magnitude of the electric field on the cor-
tical surface of our realistic head model is shown in Fig. 1C, and was
similar to that induced by HD-tDCS [6]. The maximum magnitude
was 0.25 V/m whereas average magnitudes in the FDI and ADM ROIs
were 0.10 V/m and 0.08 V/m, respectively. The distribution of the
normal component is shown in Fig. 1D; average values in the afore-
mentioned ROIs were 0.06 V/m and 0.01 V/m, respectively. The
average values of the tangential component were 0.06 V/m in both
ROIs. The standard montage (two 35 cm2 electrodes) induced higher
average values for the magnitude of the E-field in both ROIs: 0.13/
0.12 V/m for the FDI/ADM ROIs. The same trend was observed for
the normal component of the field: 0.08/0.07 V/m for the FDI/
ADM. The similar values in both ROIs indicate that the standard
montage is less focal than both the CE- and HD-tDCS montages.

We have found that MEP amplitude was significantly depen-
dent on the interaction between time and stimulation [F(4, 11) = 4.22,
p = 0.026; Wilk’s Λ = 0.39]. We run follow-up ANOVAs to test on
which muscle the effect was stronger. Interestingly, these analyses
revealed that the interaction between time and stimulation was sig-
nificant only for the FDI muscle and it was not significant for the
ADM muscle. For FDI, we found increased MEPs after A-tDCS and
decreased MEPs after C-tDCS, and no significant changes after sham-
tDCS [interaction stimulation × time: F(2,28) = 5.67, p = 0.009; all post-
hoc tests comparing MEPs in post-TMS across stimulations p < 0.05].
Baseline MEP amplitudes and TMS intensities did not differ between
stimulation conditions (p > 0.05). In other words we replicated the
effects of tDCS that have been found with conventional montages
(Fig. 2A).

For ADM, we found no significant effects of time by stimula-
tion interaction on the cortical excitability [stimulation by time
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interaction F(28,2) = 2.40, p = 0.11], supporting the focal distribu-
tion of currents resulting from modelling the electric field. Although
the choice of ADM as a control muscle has some limitation due to
the possible different excitability compared to FDI, ADM has shown
consistent modulation to tDCS [10], as reported in the first pioneer
study on tDCS [17]. In our experiment, the lower amplitude of MEPs
from ADM may raise the concern whether effects of tDCS on ADM
could be revealed at this TMS intensity. However, a recent paper
has shown that low amplitude MEPs may be optimal to reveal

excitatory effects of plasticity-inducing protocols, whereas may be
suboptimal to reveal inhibitory effects [18]. Nevertheless, we found
no excitatory effects of A-tDCS on ADM. Therefore, these data support
that CE-tDCS may induce focal distribution of currents.

When looking at MEPs recorded from the ADM, we only found
a significant main effect of time [F(1,14) = 5.16, p < 0.05], revealing
that MEPs decreased during the experimental session regardless of
the stimulation (Fig. 2B). The mechanism underneath such de-
crease is unclear. Surround inhibition is a known mechanism within

Figure 1. (A) Overview of the concentric electrodes (CE-tDCS) configuration. (B) Picture shows a representative subject with the CE-tDCS montage. The distribution of the
electric field magnitude (C) and of its normal component (D) on the cortical surface. The positions of the centers of the first dorsal interosseous (FDI) representation, in the
lateral part of the hand knob, and abductor digiti minimi (ADM) representation, in the mesial part of the hand knob, are indicated by the symbols * and +, respectively. The
normal component flows into the cortex under the anode (red).
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Figure 2. Motor evoked potential (MEP) magnitudes pre and post anodal-, cathodal- and sham-transcranial direct current stimulation. CE-tDCS was applied at 1 mA for
10 min. Error bars depict standard error and asterisks depict p < 0.05. (A) Mean and standard error for MEPs from the right first dorsal interosseous (FDI), in μV: Pre-sham:
1095 ± 54; pre-AtDCS: 1126 ± 47; pre-CtDCS: 1056 ± 48; post-sham: 1077 ± 121; post-AtDCS: 1315 ± 101; post-CtDCS: 867 ± 77. (B) Mean and standard error for MEPs from
the right abductor digiti minimi (ADM), in μV: pre-sham: 600 ± 77; pre-AtDCS: 641 ± 70; pre-CtDCS: 682 ± 55; post-sham: 616 ± 111; post-AtDCS: 558 ± 66; post-CtDCS:
514 ± 80.
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the motor system [19], in which neural signals to a central recep-
tive field or target are facilitatory and eccentric signals are inhibitory.
However, it is not a likely explanation because it would predict a
decrease of ADM MEPs only in the A-tDCS condition. Differently, the
decrease of ADM MEPs becomes apparent only as an overall effect
when all stimulation conditions are considered. Therefore an al-
ternative explanation may be a subtle decrease in arousal during
the experiment.

The effects on FDI and conversely the lack of effects on ADM show
that the effective electric field was mainly restricted to the area under
the central electrode and did not substantially spread to the sur-
rounding cortical regions. Together with the modelling results, these
data suggest that the normal component of the electric field on the
gyrus may be the effective one [20], because it is the only one that
has considerably different values in the two ROIs. These data also
confirm that the use of a small target electrode [8,10] can increase
stimulation focality compared with standard montages employ-
ing bigger electrodes [21,22].

Despite the high current density of the central electrode and
shunting, as shown in the model of the current distribution, the skin
sensations reported by participants were relatively low (sham-
tDCS: 2.29 ± 1.50; A-tDCS: 2.67 ± 2.47; C-tDCS: 2.33 ± 2.18).
Importantly, participants were not able to distinguish between stimu-
lations because of the itching sensations felt below the tDCS
electrodes [Wald chi-square (d.f. 2) = 0.33, p = 0.85] [15].

It should be noted that the size of the MEP changes both for
A-tDCS and C-tDCS (17% and 18% of baseline respectively) may be
smaller than the ones reported with conventional montages [23,24],
although extended measurement of the after-effects of CE-tDCS and
a direct comparison of the data with conventional montages are
needed for this conclusion. Smaller MEP changes may be due to the
decreased average E-field in the target region compared to the con-
ventional montage, due to greater shunting caused by the electrodes’
proximity.

These data suggest that CE-tDCS leads to an effective and focal
modulation of neural activity by limiting the current spread on the
cortex. This ensures a better control during the stimulation in terms
of current direction under the active electrode that, besides stim-
ulation of a single area, may be of particular interest when
stimulating two sites and when applying in phase and out of phase
transcranial alternating current stimulation, because it allows to over-
come confounds related to the return electrode [25]. Therefore, CE-
tDCS can represent an additional tool which is able to offer important
advantages to those who use standard tDCS, or tES in general, in
their research activity.
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