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A B S T R A C T

Substantial evidence has shown that ongoing neural activity significantly contributes to how the brain responds
to upcoming stimuli. In visual perception, a considerable portion of trial-to-trial variability can be accounted for
by prestimulus magneto/electroencephalographic (M/EEG) alpha oscillations, which play an inhibitory function
by means of cross-frequency interactions with gamma-band oscillations. Despite the fundamental theories on the
role of oscillations in perception and cognition, the current literature lacks a clear theorization of the neural
mechanisms underlying the effects of prestimulus activity, including electrophysiological phenomena at dif-
ferent scales (e.g., local field potentials and macro-scale M/EEG). Here, we present a model called the oscillation-
based probability of response (OPR), which directly assesses the link between meso-scale neural mechanisms,
macro-scale M/EEG, and behavioural outcome. The OPR includes distinct meso-scale mechanisms through
which alpha oscillations modulate M/EEG gamma activity, namely, by decreasing a) the amplitude and/or b)
neural synchronization of gamma oscillations. Crucially, the OPR makes specific predictions on the effects of
these mechanisms on visual perception, as assessed through the psychometric function.
significance statement: The oscillation-based probability of response (OPR) is grounded on a psychophysical
approach focusing on the psychometric function estimation and may be highly informative in the study of
ongoing brain activity, because it provides a tool for distinguishing different neural mechanisms of alpha-driven
modulation of sensory processing.

1. Introduction

The response of neurons is well known to not merely depend on
external input; indeed, a repeated presentation of the same stimulus
gives rise to highly variable responses at the neural level as well as at
the behavioural level (Arieli et al., 1996; Vogels et al., 1989). Inter-
estingly, such response variability can be accounted for by fluctuations
in ongoing brain activity, as revealed by invasive (Arieli et al., 1996)
and non-invasive (Kayser et al., 2016; Weisz et al., 2014) electro-
physiological recordings, functional magnetic resonance imaging
(Baldassarre et al., 2012; Hesselmann et al., 2008a,) and behavioural
(Song et al., 2014) studies.

The time-frequency pattern of brain oscillations represents a key
feature by which ongoing activity shapes both neural and behavioural
responses (Ai and Ro, 2014; Baumgarten et al., 2016; Haegens et al.,
2011; Kayser et al., 2016; Leske et al., 2015; Linkenkaer-Hansen, 2004;
Mazaheri et al., 2009; Schubert et al., 2008; van Dijk et al., 2008).

Specifically, ongoing oscillations within the alpha band (frequency
range: 8−13 Hz), as measured by magneto/electroencephalographic
(M/EEG) recordings, represent a major factor in accounting for re-
sponse variability in the domain of visual perception (Busch et al.,
2009; Iemi et al., 2017; Iemi and Busch, 2018; Lange et al., 2014;
Mathewson et al., 2009; van Dijk et al., 2008).

In recent decades, neuroscientists have developed fundamental
theories highlighting the role of oscillations in brain dynamics, such as
in neural inhibition (inhibition timing hypothesis, Klimesch et al.,
2007; gating by inhibition, Jensen and Mazaheri, 2010) and neural
communication (communication through coherence, Fries, 2005).
Nevertheless, the micro- (e.g., single-unit measurements) and meso-
scale (e.g., local field potential, LFP) neural mechanisms that contribute
to M/EEG oscillatory activity and their link with behaviour are far from
established (Cohen, 2017; Musall et al., 2014).
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2. The oscillation-based probability of response

The oscillation-based probability of response (OPR) is a model that
fuses neurophysiological evidence, mathematical modelling and a
psychophysical approach. The aim of the model is twofold: first, to
identify potential neural mechanisms of alpha-gamma interactions that
support the effects of prestimulus M/EEG oscillations on visual per-
ception (Lange et al., 2014; Ruhnau et al., 2014; Sadaghiani and
Kleinschmidt, 2016; Zoefel and VanRullen, 2017); second, to provide a
framework with clear predictions on the effects on perception, so that
behavioural performance can be exploited to distinguish the underlying
neural mechanisms that cannot be disentangled by means of M/EEG.

The OPR is based on the following key points: 1) alpha oscillations
affect visual perception, 2) alpha activity plays an inhibitory role, 3)
alpha inhibition occurs through alpha-gamma cross-frequency interac-
tions, 4) alpha-modulated gamma oscillations affect the probability of
neurons in sensory areas to respond to an incoming stimulus; and 5) the
probability of response to incoming stimuli is specifically modulated by
distinct coupling mechanisms of alpha-gamma interaction.

Crucially, the OPR includes the estimation of the response prob-
ability for a wide range of stimulus intensities and therefore generates a
psychometric function. In this framework, the estimated psychometric
function represents an extremely powerful tool because it provides
suggestions for the involvement of two distinct neural mechanisms,
which cannot to be discerned non-invasively (Cohen, 2017;
Whittingstall and Logothetis, 2009). We therefore propose the appli-
cation of OPR to generate hypotheses on distinct mechanisms involved
in alpha-driven modulation of sensory processing, based on the specific
modification of the psychometric function.

2.1. Alpha oscillations affect visual perception

Oscillatory activity within the alpha band is dominant in the human
brain; it represents the strongest electrophysiological signal that can be
measured non-invasively and is observed transversely across cognitive
domains (Berger, 1929; Klimesch, 2012).

The effect of spontaneous variations in M/EEG alpha activity on
perception is well documented. Typically, to detect the effects of such
spontaneous fluctuations, studies employ stimuli at the individual
sensory threshold, i.e., the so-called “near-threshold stimuli”, by defi-
nition detected in half of the trials (for a review see Ruhnau et al.,
2014). Single-trial analysis is then performed to assess within-subjects
variance (Pernet et al., 2011).

Experimental evidence has shown that perceptual performance in
the visual domain is affected by prestimulus M/EEG alpha power.
Specifically, trials with a low alpha power preceding stimulus onset
lead to a higher probability of stimulus detection, both between and
within subjects (Fig. 1A; Busch and Van Rullen, 2010; Hanslmayr et al.,
2007; van Dijk et al., 2008), and it has recently been suggested that this
may be due to a more liberal criterion in the response rather than an

improved perceptual acuity (Iemi et al., 2017; Limbach and Corballis,
2016). Furthermore, a few studies reported a difference in the visual
detection rate between opposite phases of 7−10 Hz oscillations
(Fig. 1B; Busch et al., 2009; Busch and Van Rullen, 2010; Mathewson
et al., 2009; but see Benwell et al., 2017,). Consistently, ongoing M/
EEG alpha power and phase have been shown to be relevant factors in
predicting transcranial magnetic stimulation-induced phosphene per-
ception (Dugué et al., 2011; Romei et al., 2008).

Moreover, a few studies have provided evidence of a causal role of
prestimulus alpha oscillations on perception by modulating the alpha
rhythm. A traditional way to modulate alpha power is by means of
spatial attention: alpha power is lower for the attended than for the
unattended visual hemifield (Worden et al., 2000; Sauseng et al., 2005),
thereby affecting detection performance (Busch and Van Rullen, 2010).
More recently, alpha oscillations have been modulated with entrain-
ment mechanisms, reflecting the phase alignment of the brain’s oscil-
latory activity to external rhythmic stimulation by sensory stimulation
(e.g., visual or auditory rhythmic stimuli; Spaak et al., 2014; Henry and
Obleser, 2012) and through non-invasive brain stimulation techniques
(Thut et al., 2017, 2011; Helfrich et al., 2016). Entrainment of an en-
dogenous alpha rhythm results in enhanced power and phase-locking,
and, in turn, the entrained alpha power and phase modulate perception,
consistent with findings on the effects of spontaneous oscillations
(Romei et al., 2010; Spaak et al., 2014; Thut et al., 2011).

In short, there is both correlational and causal evidence that on-
going alpha oscillations shape visual perception.

2.2. Alpha activity plays an inhibitory role

The direction of behavioural effects of alpha activity described in
the literature, i.e., a larger alpha power results in a lower the prob-
ability of perceiving a visual stimulus, has led to the most widespread
interpretation that alpha activity plays an inhibitory role (Klimesch
et al., 2007Jensen and Mazaheri, 2010; but see Palva and Palva, 2007).

According to the gating by inhibition hypothesis (Jensen and
Mazaheri, 2010), alpha inhibition appears to be cyclic and linked to the
phase of alpha oscillations: rhythmic alpha activity serves as a pulsed
inhibition that modulates the time window for sensory processing, i.e.,
the duty cycle. In this view, when alpha power is high (i.e., high in-
hibition), the duty cycle is shorter than that when alpha power is low
(Jensen and Mazaheri, 2010; Mathewson et al., 2009), as shown by the
green trace in Fig. 2A.

Furthermore, alpha oscillations may be “asymmetric” or “biased”
(Hyafil et al., 2015; Jensen and Mazaheri, 2010; Schalk, 2015),
meaning that alpha oscillations are not zero-mean. Rather, the mean of
an alpha cycle varies with the amplitude of alpha oscillation, as shown
by the red trace in Fig. 2A. According to this perspective, the in-
stantaneous voltage level may represent a more direct measure of
functional inhibition than power and phase alone, as suggested by the
function-through-biased-oscillations (FBO) framework (Schalk, 2015;

Fig. 1. Effects of prestimulus M/EEG alpha
oscillations on visual detection. A) Lower alpha
power preceding the stimulus leads to a higher
proportion of hits (grand average of the spectra
calculated in the second before target onset in
occipital MEG channels; adapted from van Dijk
et al., 2008). B) Opposite alpha phase at target
onset (time: 0 ms) for hits and misses (grand
average event-related potential at EEG channel
Pz; adapted from Mathewson et al., 2009).
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Schalk et al., 2017). A higher amplitude of alpha activity (in absolute
value) corresponds to a more negative instantaneous voltage level,
which leads to higher inhibition (Hyafil et al., 2015; Fig. 2B). Such
interpretation is supported by invasive neurophysiological recordings,
showing both a general decrease in neural firing rate during periods of
high alpha power and a rhythmic relation between alpha oscillations
and neuronal spiking (Haegens et al., 2011). FBO predictions are con-
sistent with evidence showing the effects of alpha phase only when
alpha power is high (Cohen and Van Gaal, 2013; Mathewson et al.,
2009).

Concisely, negative asymmetric alpha oscillations represent a key
element in inhibition.

2.3. Alpha inhibition through alpha-gamma cross-frequency interactions

Existing evidence (Bahramisharif et al., 2013; Jensen et al., 2014;
Roux et al., 2013; Spaak et al., 2012) and current theories on the
functional role of the alpha band (Bonnefond et al., 2017; Jensen and
Mazaheri, 2010) suggest that the pulsed inhibition caused by alpha
oscillations, which shortens the duty cycle, occurs by means of cross-
frequency interactions with the gamma band. Accordingly, alpha-
gamma interactions have been consistently observed during rest and in
the prestimulus window using both invasive and non-invasive M/EEG
recordings (Bahramisharif et al., 2013; Osipova et al., 2008; Spaak
et al., 2012; but see Ray and Maunsell, 2015). According to these re-
sults, in addition to the neural gamma activity associated with stimulus
processing (Fries et al., 2007), alpha-gamma coupling is likely in-
tegrated in the ongoing activity that shapes the perceptual outcome (Ni
et al., 2016; van Es and Schoffelen, 2019v).

Hereafter, we will focus on the coupling between the alpha and
gamma band, while an in-depth analysis of gamma band activity in
stimulus coding and its role in perception is provided in the study by
Pritchett et al. (2015).

As shown in Fig. 3, the relationship between alpha and gamma
oscillations is regulated both by amplitude-amplitude coupling (AAC),
i.e., alpha power increase associated with gamma decrease, and by
phase-amplitude coupling (PAC) interactions, i.e., gamma power nested
within the alpha phase (Spaak et al., 2012). In line with the asymmetry
in alpha oscillations, the stronger the alpha amplitude, the stronger the
PAC (Osipova et al., 2008); high-amplitude alpha oscillations, accom-
panied by a general decrease in alpha voltage level, can lead to a
stronger phasic modulation of gamma power compared to low-ampli-
tude alpha oscillations (Hyafil et al., 2015). Therefore, PAC describes
the phasic suppression of macro-scale M/EEG gamma activity within an
alpha cycle.

In summary, we can conclude that alpha-gamma cross-frequency
interactions are involved in ongoing oscillatory activity, in which alpha
oscillations inhibit M/EEG gamma power.

2.4. Alpha-modulated gamma oscillations affect the probability of response
to incoming stimuli

The alpha-gamma AAC and PAC mechanisms are grounds to un-
derstand the inhibitory effects of ongoing alpha oscillations on per-
ception: alpha can modulate the probability of response of gamma-os-
cillating neurons of sensory areas to incoming stimuli of different
intensities (i.e., luminance or contrast level, considered to be propor-
tional to the input to neurons and quantified in terms of depolarizing
current; Tiesinga et al., 2004) and, consequently, the behavioural re-
sponse probability.

Before taking into account alpha modulation of gamma activity, let
us consider more deeply the probability of response of gamma oscilla-
tions. Gamma oscillations of small groups of neurons can be measured
at the meso-scale level by means of invasive recordings, such as LFP,
and more specifically, its local component (Kajikawa and Schroeder,
2011). Fig. 4A shows the probability of response, according to the OPR
model, when facing a wide range of input intensities in a condition
without alpha inhibition: the neural response probability depends on a
threshold (to be reached to induce a response), input intensity and
amplitude of LFP gamma oscillations (Ni et al., 2016). If we consider a
wide range of input intensities below a critical intensity (a), an in-
coming input will never induce a neural response (response probability
= 0) in sensory areas. For higher intensities, the neural response de-
pends on the phase and amplitude of LFP gamma oscillations, giving
rise to a response probability between 0 and 1. For even higher in-
tensities, i.e., above a value (b), the stimulus will induce a response
independently of gamma phase (response probability = 1). The re-
sulting probability function of the neural response (from now on re-
ferred to as “single” probability of response) at different input

Fig. 2. Negative and asymmetric alpha oscil-
lations. A) An increase in alpha amplitude is
accompanied by a modification in the mean
voltage level (blue trace: time-varying in-
stantaneous voltage; red trace: mean voltage
level), which shortens the duty cycle (green
trace); adapted from Schalk (2015). B) Alpha-
band oscillations (blue trace) modulate neu-
ronal spiking activity (bottom); neural spiking
is phasically reduced, i.e., pulsed inhibition is
stronger when the amplitude of alpha oscilla-
tions is higher; adapted from Hyafil et al.
(2015).

Fig. 3. Schematic representation of alpha (α)-gamma (γ) cross-frequency in-
teractions. Left: Amplitude-amplitude coupling (AAC); gamma power decreases
as a function of alpha amplitude. Right: Phase-amplitude coupling (PAC) at
different alpha amplitudes; when alpha is low (dark colour), the averaged
gamma power (dashed line) is high with negligible influence of alpha phase,
while when alpha is high (light colour), the averaged gamma power is low on
average (dashed line) and is nested within the alpha cycle. Note that the
maximum value of gamma power is the same for low and high alpha inhibition.
Adapted from Hyafil et al., 2015.
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intensities is represented in Fig. 4B and mathematically defined as
follows (formulas reported in Table 1). LFP gamma oscillations (GF) are
defined in (1) as a sinusoidal function, while the single probability of
response (PSR), independent of gamma frequency, is defined in (2),
which is calculated as the ratio between the time window in which the
input elicits a response (i.e., when the sum of gamma voltage and input
intensity is higher than the threshold) and the wavelength of gamma.
Importantly, this calculation is based on gamma features at the im-
mediate time of stimulus presentation and does not require the statio-
narity assumption, i.e., the signal is not required to be stable for one or
more gamma cycles. The sinusoidal function of gamma cycles has the
only aim to model the random nature at which a stimulus can occur and
with the same probability in each phase of a gamma cycle, but it does
not indicate that the signal must to be stable at the time when the
stimulus is presented. The only requirements are that the stimulus oc-
curs randomly in the gamma cycle and that a sufficient number of sti-
muli are presented for an accurate representation of the probability.
When considering a population of neurons (i.e., many small groups of
neurons), the global probability of response is calculated by averaging
the single response probabilities. Within a neural population, we can
assume a certain degree of variability in the amplitude of LFP gamma
oscillations (Fig. 4C). Considering this variability to be normally

distributed among neurons, the global response probability can be ex-
pressed as the weighted average of single response probability func-
tions, as defined in (3). As shown in Fig. 4D, the global response
probability reveals a sigmoid trend.

Crucially, the OPR allows us to estimate the probability of response
when gamma activity is modulated by pulsed alpha inhibition by con-
sidering several features of the alpha-gamma interaction. First, the
gamma band oscillates around the alpha voltage level, as is typically
detected in raw LFP signals (Jia and Kohn, 2011). Therefore, because
alpha oscillations are asymmetric, gamma activity is shifted closer to or
further from the threshold in a phase-dependent manner locked to
alpha oscillations. Moreover, gamma activity is regulated by alpha ac-
tivity through mechanisms that generate the AAC and PAC observed in
M/EEG: an increase in alpha power leads to a stronger modulation of
gamma activity with a stronger phase dependency. The link between
the responses of neural populations to the behavioural outcome is a
highly complex subject, but we can assume that the behavioural re-
sponse probability is proportional to the response at the neural level, at
least in simple visual perception tasks such as detection (Britten et al.,
1992; Reynolds et al., 2000; Williford and Maunsell, 2019; but see Hara
et al., 2014). Therefore, we consider that the global response prob-
ability function obtained from (3) may represent the psychometric

Fig. 4. Neural response probability as a func-
tion of input intensity in a condition without
alpha inhibition. A) Incoming inputs (c: high
intensity, green; d: low intensity, blue) during
LFP gamma oscillations of a small group of
neurons in sensory areas. Given a fixed
threshold for response, double-headed arrows
indicate the response probability (i.e., time
windows during which incoming inputs may
induce a response). B) Single probability of
response: response probability as a function of
input intensity at fixed threshold and fixed
gamma amplitude, as defined in (3). Along the
input intensity axis, a represents the minimum
input intensity able to elicit neural response, b
shows the minimum input intensity that de-
termines a response independently of phase,
and inputs between a and b indicate intensities
inducing a phase-dependent response (prob-
ability between 0 and 1); c and d represent the
high- and low-intensity inputs shown in (A).
Along the response probability axis, c and d
represent the response probability of the high-
and the low-intensity inputs, respectively. C)
Variability in the amplitude of LFP gamma
oscillations within the neural population leads
to (D) variability in response probability
functions. The mean of all response probability
functions, weighted for their distribution in the
neural population, results in a sigmoid function
that represents the global response probability
function (dotted line).
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function observed behaviourally (Britten et al., 1992), in which an
observer’s performance in a visual detection task is related to the
physical quantity of a stimulus, e.g., its intensity (Wichmann and Hill,
2001).

As explained above, the calculation of the probability of response of
gamma oscillating neurons does not require the stationarity assump-
tion. Thus, the model is suitable to represent the modulation of gamma
activity by alpha oscillations. Finally, alpha oscillations themselves do
not need to be stationary, although a sinusoidal function is used to
represent the randomness of the occurrence of the stimulus in the alpha
cycle.

The OPR models two different meso-scale mechanisms that regulate
alpha-gamma interaction. Notably, these two meso-scale mechanisms
would result in the same alpha-gamma modulation at the macro-level of
M/EEG oscillations, but lead to distinct effects on the final behavioural
response, as we will describe in detail in the next section.

In sum, these observations reveal that the OPR predicts the prob-
ability of response of gamma-oscillating neurons of sensory areas and
therefore the probability of behavioural response, which is mediated by
alpha activity.

2.5. The probability of response to incoming stimuli is specifically
modulated by distinct coupling mechanisms of alpha-gamma interactions

Despite compelling evidence about the inhibitory role of alpha ac-
tivity on visual perception and on cross-frequency interactions with the
gamma band, little is known about the micro- and meso-scale me-
chanisms associated with ongoing alpha inhibition (Cohen, 2017;
Hyafil et al., 2015; Sadaghiani and Kleinschmidt, 2016; Spaak et al.,
2012). Indeed, the general relation between M/EEG features and lower-
scale mechanisms is likely to be few to some rather than one to one: the
same M/EEG oscillatory feature (e.g., alpha activity) may be generated
by distinct processes (Cohen, 2017). For example, at lower-scale levels,
M/EEG power appears to be generated both by changes in amplitude,
i.e., the magnitude of an oscillation (Whittingstall and Logothetis,
2009) and in synchronization, i.e., the temporal alignment of the phase
of oscillations (Makeig et al., 2002). Specifically, evidence from si-
multaneous LFP and EEG recordings of the visual cortex in behaving
monkeys has shown that LFP amplitude and synchronization in-
dependently contribute to M/EEG gamma power (Musall et al., 2014).
Therefore, distinct modulations of LFP gamma oscillations at the meso-
scale potentially result in the same effects on the macro-scale M/EEG
gamma oscillations.

Based on this evidence, the OPR models these two mechanisms in
the alpha-gamma cross-frequency interaction to explore their effects on
the probability of response to incoming visual inputs. Importantly, ac-
cording to the OPR, alpha-driven changes in amplitude and in syn-
chronization of LFP gamma oscillations lead to distinct effects on the
global response probability function and therefore on the behavioural
outcome. The OPR independently models the effects of changes in the
amplitude and synchronization of the gamma band. Although we are
unable to exclude the possibility that the two mechanisms co-occur
simultaneously, the OPR may still be able to disentangle these me-
chanisms if one prevails over the other.

Thus, a psychophysical approach that describes behavioural re-
sponses for a wide range of stimuli, i.e., the psychometric function,
provides a powerful tool that may be exploited to disentangle the ef-
fects of the two phenomena in alpha-driven modulation of sensory
processing.

According to the OPR, alpha modulates M/EEG gamma power by
decreasing (a) the amplitude of LFP gamma oscillations and/or (b) the
degree of synchronization among small groups of neurons.

(a) Alpha reduces LFP gamma amplitude. An increase in alpha oscil-
lations may induce not only a rhythmic decrease in the mean LFP
gamma voltage level but also a decrease in gamma amplitude, which
leads to a reduction in M/EEG gamma power (Fig. 5, blue box).

Similarly, the amplitude of fast oscillations has been shown to be in-
creased by depolarizing currents that bring membrane potentials closer
to the firing threshold (Bracci et al., 2003). With the same mechanism,
alpha activity may phasically move the mean voltage of gamma oscil-
lations away from threshold inducing a phasic reduction of these os-
cillations, the mechanism of which is mathematically defined as fol-
lows. Alpha (AF) is defined in (4), and alpha-modulated gamma (GF) is
defined in (5): LFP gamma oscillation is modelled as a sinusoidal
function with a mean equal to alpha voltage and amplitude propor-
tional to alpha voltage. In this way, the gamma phase is independent of
the alpha phase, so that at each time point in the alpha wave, the
gamma phase can assume any value. In (6), the probability of response
of neurons (PSR) is defined for each time point (ti) in combination with
(2), which calculates the single response probability for gamma oscil-
lations, and with (4) and (5), which include the modulation of gamma
oscillations by alpha activity. The single probability of response of
neurons over the entire alpha cycle for each input intensity is calculated
as the sum of response probabilities at each time point ti with time
interval dt; with dt close to zero, the calculation becomes more precise
and is expressed by (7). As defined above, when considering a popu-
lation of neurons, the global response probability (PGR) is expressed as
the weighted average of single response probabilities (3) and results in
a sigmoid trend.

A change in alpha activity modulates the psychometric function and
determines a horizontal shift that can be calculated with a numerical
simulation expressed by (6), (7) and (3). When alpha increases, the
psychometric function is shifted rightwards, resulting in a worsening of
visual performance, as shown by the blue trace in Fig. 5.

In the literature on visual perception, a shift of the function is
commonly described in terms of a contrast gain mechanism, arising
from a divisive scaling of the input (Chaumon and Busch, 2014; Ling
and Carrasco, 2006; Pestilli et al., 2007; Reynolds et al., 2000; van
Boxtel, 2017). Interestingly, a contrast gain-like mechanism has been
more frequently associated with the activity of single neurons than the
activity of the entire system (Kim et al., 2007), consistent with the OPR.
Moreover, a contrast gain-like mechanism has been suggested as the
main functional process underlying sustained endogenous attention and
adaptation, both from behavioural studies and single-unit neural mea-
surements (Cameron et al., 2002; Donovan and Carrasco, 2018; Pestilli
et al., 2007; Reynolds et al., 2000). However, the relationship between
alpha-gamma oscillations, attention and perceptual outcome assessed
using the psychometric function has not yet been investigated.

(b) Alpha reduces LFP gamma synchronization. Alpha-driven gamma
power modulations may otherwise arise from phasic desynchronization
of LFP gamma oscillations (Fig. 5, violet box). In this case, the alpha-
induced rhythmic decrease in the gamma mean is associated with a
decrease in synchrony. The degree of neural synchronization is ex-
pressed as values ranging from 0 to 1, where 0 represents complete
gamma desynchronization among neurons and consequent zeroing of
the global response, despite the actual response of single neurons. This
definition is in line with several measures adopted to quantify neural
synchrony in the literature on functional connectivity, which rely on
the concept of cross-correlation (e.g., the coherence coefficient; Bastos
and Schoffelen, 2016). Here, alpha (AF) is defined in (4), alpha-modu-
lated gamma (GF) is defined in (8), and synchronization is modelled in
(9), as follows. The synchronization factor (SF), as expressed in (9) and
shown in Fig. 6, is modelled to be proportional to the alpha oscillation,
varying in a range that is limited by the maximal and minimal voltages
that alpha activity is able to reach, as defined in (4). The synchroni-
zation factor is 1 when the alpha voltage is at its maximum value, the
synchronization factor is 0 when the alpha voltage is at the absolute
minimum voltage, and the value of the synchronization factor at each
time point of the alpha wave is proportional to the difference between
the immediate alpha voltage and absolute minimum voltage. Therefore,
the synchronization factor depends on the immediate voltage of alpha
in relation to an absolute minimum rather than the minimum of the
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alpha cycle in which gamma is embedded and does not depend on the
stationarity of the signal.

Postulating that the LFP gamma phase is independent from the
alpha phase, the single probability of response is defined for each time
point (ti) in (10), by combining (2) with (4) and (8), multiplied by the
synchronization factor (9). Then, the single (PSR) and the global (PGR)
probabilities of response are calculated in (7) and (3), respectively,

consistent with that described in the previous paragraph. A numerical
simulation of the psychometric function expressed by (7) and (10) re-
sults in a sigmoid trend. As shown by the violet trace in Fig. 5, an in-
crease in alpha activity associated with phasic gamma desynchroniza-
tion leads to a worsening of visual performance, in this case by lowering
the upper asymptote.

In the literature on visual perception, a modification in the upper

Fig. 5. The OPR predictions associated with
alpha inhibition described at different scales.
Macro-scale (top row): Gamma power, as
measured by M/EEG recordings, is modulated
by alpha inhibition by means of AAC and PAC
mechanisms shown in Fig. 3: M/EEG gamma
power is lowered on average and is nested
within the alpha phase. Meso-scale (middle
row): Two representative groups of neurons in
primary sensory areas, oscillating at gamma
frequency with different amplitudes, as mea-
sured by the LFP, that are modulated by alpha
activity. During alpha inhibition, the modula-
tion of gamma power fluctuations may arise
either from a phasic suppression of gamma
amplitude (blue box) or from a phasic desyn-
chronization of gamma oscillations (violet box;
synchronization range as shown by colour bar).
Behaviour (bottom row): two mechanisms of
alpha inhibition lead to distinct effects on the
psychometric function (dashed line: psycho-
metric function without alpha inhibition). If
alpha inhibition is associated with a phasic
suppression of the amplitude of gamma oscil-
lations, the OPR predicts a rightward shift of
sensory threshold (blue line), while phasic
gamma desynchronization is expected to give
rise to a lowering of the upper asymptote
(violet line).

Fig. 6. Synchronization factor. The synchroni-
zation factor (SF(t)) is defined as a sinusoidal
function synchronized with AF. SF(t) is 1 when
AF(t) is maximal (i.e., AF(t) = AM + A); 0 on
the SF axis corresponds to the minimum vol-
tage (Min) on the AF axis, where Min is the
absolute minimum voltage that AF has the po-
tential to reach. Therefore, interval 1 on the SF
axis corresponds to interval AM + A – Min on
the AF axis, making the following proportions
valid: SM: AM= 1: (A + AM– Min); S: A = 1:(A
+ AM– Min).
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bound of the psychometric function is referred to as the response gain
mechanism, which mainly affects performance (as well as the neural
response) to high-intensity stimuli because the modulation is propor-
tional to the response (Chaumon and Busch, 2014; Reynolds et al.,
2000). Intriguingly, neural synchronization has been proposed as a
candidate mechanism for response gain (Buia and Tiesinga, 2006; Fries
et al., 2001; Kim et al., 2007; Reynolds and Chelazzi, 2004). In previous
studies investigating the relationship between attention and visual
perception, the response gain mechanism has been related to transient
and exogenous attention (Ling and Carrasco, 2006; Pestilli et al., 2009;
Wang and Krauzlis, 2018), although a direct link with ongoing oscil-
lations has not been reported.

In summary, the OPR predicts distinct effects of an alpha-induced
LFP gamma amplitude decrease and gamma desynchronization on the
psychometric function, i.e., a rightward shift of the curve and a low-
ering of the upper asymptote, respectively.

Here, alpha is represented as a stationary function for simplicity.
However, the calculation of the synchronization factor is based on the
immediate alpha voltage and does not depend on the stationarity as-
sumption within one alpha cycle.

3. Discussion and future directions

The OPR models the behavioural outcomes of distinct meso-scale
mechanisms that may be associated with the same M/EEG feature, i.e.,
ongoing alpha oscillations and cross-frequency alpha-gamma interac-
tions. Our framework is based on consistent evidence from non-invasive
electrophysiology revealing the effects of ongoing M/EEG alpha oscil-
lations on visual perception, and it aims to explore the link with other
fields of investigation, such as the psychophysical approach to visual
perception and invasive recordings.

The effects of ongoing alpha oscillations reported in the literature
are consistent. Nevertheless, these effects may represent an under-
estimation of the actual relationship between oscillations and percep-
tual outcome. The computation of the oscillatory activity during the
“prestimulus window” to estimate its effects at the time of stimulus
presentation is based on the assumption that the signal is stationary in
the analysed window and enables predictions of the exact moment
along the oscillation cycle in which an external input reaches the
cortex. However, according to recent studies, oscillatory activity may
not be sustained but consists of burst-like events (van Ede et al., 2018v).
Thus, the effects of ongoing oscillations may be better represented by
the status of the cortex at the time of stimulation, consistent with the
findings reported by Romei and coworkers (Romei et al., 2012). The
OPR does not rely on the stationarity assumption, as explained in the
previous paragraphs; its predictions are based on the exact point in time
of the incoming stimulus and can thus be extended to peristimulus
burst-like activity. The necessary condition on which the OPR relies to
provide an accurate estimation of the probability of response is that a
sufficient number of stimuli are presented randomly along the alpha
cycle.

The predictions of the OPR strictly rely on alpha-gamma coupling
and they would not be valid if only alpha or only gamma oscillations
were considered. On one hand, the OPR relies on gamma, because it
defines the probability of response of gamma-oscillating neurons, while
alpha is modelled as the oscillatory activity of neurons that are not
directly involved in stimulus processing. When considering alpha alone,
concepts such as changes in excitability and changes in duty cycle that
are incorporated in the OPR might still be formulated, and they have
indeed been proposed in other models before the OPR. However, dis-
tinct effects of alpha on the psychometric function would not be dis-
sociable. In fact, the OPR provides predictions for the effects of alpha by
exploiting a mathematical model of distinct types of meso-scale alpha-
gamma coupling.

On the other hand, the OPR relies on alpha. Indeed, the OPR aims to
explain the effects of alpha, and the predictions of the OPR strictly

depend on the modulatory effects of low-frequency oscillation, i.e., in
the alpha band, on high-frequency oscillations, i.e., in the gamma band.
When considering gamma alone, the model would lack two funda-
mental mechanisms: a) changes in amplitude/synchronization of
gamma oscillations occur phasically along the alpha cycles and b) the
average gamma level phasically shifts further from or closer to the
threshold with the alpha cycle. Therefore, while mathematical predic-
tions of how changes in gamma amplitude/synchronization shape
perception are still possible based on gamma oscillations alone, they
would not explain the alpha inhibitory mechanisms.

Clearly, the OPR is intended as a simplification of the relationship
between neural mechanisms and behaviour, and future studies com-
bining simultaneous multiscale recordings are needed to validate the
OPR. First, concurrent LFP and EEG in animal models will be critical in
establishing whether LFP gamma synchronization and oscillations am-
plitude are associated with ongoing EEG alpha activity and whether the
two mechanisms can dissociate. Moreover, to the best of our knowledge
it is still unclear which neurophysiological factor could determine the
occurrence of one coupling mechanism or the other one. Future studies
may elucidate whether these mechanisms are due to distinct alpha
generators, which may be responsible of different signal characteristics
(e.g., peak frequency or burstiness), and/or to different properties of
neurons in primary sensory areas, which may respond differently to the
same alpha oscillations. Finally, the specific effects of these meso-scale
mechanisms associated with alpha oscillations (i.e., LFP gamma am-
plitude decrease and desynchronization) on neural responses and per-
ceptual outcome may be explored during a visual detection task in-
volving different stimulus intensities. Importantly, we emphasize that
the two distinct effects on the psychometric function (i.e., a shift vs.
change in the upper asymptote) must be tested, as reported in the
studies by (Chaumon and Busch, 2014; Ling and Carrasco, 2006;
Reynolds and Chelazzi, 2004).

3.1. OPR applications

At the present stage, valuable insights into the context of non-in-
vasive recordings may arise from the general approach that the OPR
suggests, i.e., investigating the effects of M/EEG ongoing oscillations
through the psychometric function. Specifically, the OPR may provide
insights into the open question of whether the ongoing M/EEG alpha
rhythm represents a non-unitary phenomenon by revealing the ex-
istence of different processes associated with the same macro-scale
phenomenon (i.e., alpha oscillations) and formulating hypotheses about
the involvement of meso-scale mechanisms.

Fields of application of the OPR are numerous and may include
perceptual and attentional processes.

In the context of perception, the OPR allows to interpret the spon-
taneous variability of visual detection, which has been associated with
alpha fluctuations. In this field, only one study investigated the effects
of prestimulus alpha activity on visual performance by relating the
ongoing alpha power to changes in the psychometric curve as a function
of stimulus intensity (Chaumon and Busch, 2014). Chaumon and Busch
(2014) observed an association between a higher prestimulus alpha
power and a decrease in the upper asymptote of the psychometric
function (and not a leftward shift), which has been interpreted as re-
flecting a response gain mechanism. The OPR allows us to interpret the
specific modifications of the psychometric function observed in this
visual task based on the underlying neural mechanisms, in this case, a
desynchronization of gamma activity in visual areas. Future studies
involving invasive recordings and employing the same perceptual
paradigm may confirm this hypothesis.

Another field of application is the relation between ongoing alpha-
gamma oscillations, visual attention and perceptual outcome. In the M/
EEG literature on ongoing alpha activity, the same oscillatory process
has been suggested to subtend attentional mechanisms, regardless of
the type of attention (i.e., spatial, temporal, selective, and internal
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attention; for a review see Frey et al., 2015). However, researchers have
not clearly determined whether the same process operates in all these
cases. We therefore suggest that a psychophysical approach, which has
proven to be extremely valuable in the literature of visual perception
(Cameron et al., 2002; Herrmann et al., 2010; Pestilli et al., 2009, 2007;
Pham and Kiorpes, 2019; Reynolds et al., 2000; van Boxtel, 2017;
Wunderle et al., 2015), may allow to disentangle possible mechanisms
of alpha inhibition associated with distinct types of attention. For ex-
ample, different types of visual attention lead to distinct behavioural
effects, as assessed using the psychometric function (Donovan and
Carrasco, 2018; Ling and Carrasco, 2006). Sustained/endogenous at-
tention affects the perceptual threshold (contrast gain), while transient/
exogenous attention also affects the upper asymptote of the psycho-
metric function (response gain). Based on this evidence, we expect that
future M/EEG studies will find that (1) ongoing alpha activity is related
to both endogenous and exogenous attention and (2) the two processes
differ in their effects on the psychometric function (i.e., a shift of the
function and modification of the upper asymptote, respectively). If
these hypotheses are confirmed, the OPR would then predict that en-
dogenous and exogenous attention are associated with different meso-
scale mechanisms in the gamma band, i.e., the oscillatory amplitude
and synchronization modulation, respectively.

Finally, the OPR is also a potentially useful tool to investigate the
effects of alpha activity and attention on processes throughout the vi-
sual hierarchy. The effects of spatial attention on neural receptive fields
have been shown to be comparable throughout the visual stream in
humans (Klein et al., 2014), although researchers have not determined
whether the effects of alpha oscillations are the same. If these effects
were confirmed, a reasonable hypothesis would be that alpha-induced
gamma desynchronization prevails in downstream stages along the vi-
sual pathway, which require the integration of several visual features
(Buzsáki and Draguhn, 2004). Conversely, an alpha-induced decrease in
the gamma amplitude might be observed in the very first stages of the
visual hierarchy, maximizing the sensitivity of small groups of neurons
that are selective for basic stimulus features. Thus, stimulus complexity
may be a relevant factor to consider in the application of OPR, con-
sistent with the normalization model of attention (Reynolds and
Heeger, 2009), which suggests that the attentional effects of contrast
gain and response gain on the neurometric function also depend on
stimulus properties. A crucial step for future studies will be to integrate
this thriving field of study of the attentional effects on neural coding
with research on ongoing neural oscillations.

3.2. Generalization of the OPR to other frequencies and to other perceptual
domains

The OPR models the modulation of high-frequency oscillations in-
volved in stimulus processing by an inhibitory slow-frequency rhythm
and determines its effects on perception. While the OPR arises from the
literature on visual perception and alpha-gamma oscillations, from both
a mathematical and physiological perspective, it models a general
mechanism and therefore could be extended to the investigation of
other frequency bands and other perceptual domains.

For example, visual perception has also been shown to be phasically
modulated by slower frequencies in the theta range (4−7 Hz)
(Fiebelkorn et al., 2018; Landau and Fries, 2012), and alpha and theta
rhythms behave similarly in terms of the cross-frequency coupling with
the gamma band (Helfrich et al., 2018; Landau et al., 2015). On the
other hand, the two frequency bands can dissociate. An intriguing hy-
pothesis suggests the existence of a faster “occipital alpha” at ∼11 Hz,
which is involved in sensory aspects of perception to a greater extent,
and a slower “frontal alpha/theta” at ∼7 Hz, which appears to be
implicated in visual attention (Sherman et al., 2016; Zoefel and
VanRullen, 2017). This hypothesis suggests different generators for the
two rhythms, and it is supported by a recent MEG study performed
during the resting state, in which source-level analyses showed alpha

(but not theta) oscillations in occipital regions and theta (but not alpha)
activity in the inferior frontal gyrus (Keitel and Gross, 2016). Consistent
with these findings, Harris and colleagues have shown that while the
alpha rhythm predicts visual performance both for attended and un-
attended stimuli, the theta band accounts for the detection of un-
attended stimuli alone (Harris et al., 2018). In this context, the OPR
may also be useful in exploring whether alpha and theta rhythms
subtend different processes to explain the effects of ongoing oscillations
on perceptual outcome. In this regard, a non-trivial issue to consider in
future research is to control for methodological limitations, such as an a
priori focus on a pre-defined frequency band in the analysis of brain
oscillations.

Furthermore, similar effects to the ones described for ongoing os-
cillations on visual perception have been described in the somatosen-
sory (Baumgarten et al., 2016; Haegens et al., 2011; Linkenkaer-
Hansen, 2004) and auditory domains (VanRullen et al., 2014; Zoefel
and VanRullen, 2017), suggesting that alpha activity may subtend a
general physiological mechanisms (Haegens et al., 2015). Consistent
with this evidence, the OPR may be generalized not only to other fre-
quency bands, but also to other perceptual domains. However, in-
vestigations of the relationship between oscillations and perception
beyond near-threshold stimuli in these domains remain scarce, and
further studies are needed to understand the possible oscillatory me-
chanisms underlying perceptual behavioural outcome.

3.3. OPR and current theories

As extensively outlined in the manuscript, the model is based on
fundamental theories of neural oscillations and alpha inhibition
(Bonnefond et al., 2017; Jensen and Mazaheri, 2010; Klimesch et al.,
2007; Schalk, 2015; VanRullen and Dubois, 2011). Here, we briefly
discuss how the OPR fits into other perspectives of the role of alpha
activity in perception.

The OPR shares a few similarities with the framework proposed by
Jensen and colleagues (Jensen et al., 2012). Indeed, both models ad-
dress the relationship between alpha-gamma cross-frequency coupling
and visual perceptual outcome, proposing possible candidates for the
underlying neural mechanism. Jensen et al. (2012) describe a phase
code inspired by the theta-gamma mechanism observed in the rat
hippocampus, through which alpha activity prioritizes unattended vi-
sual inputs and orders them according to relevance. Specifically, in the
unattended visual stream, highly salient inputs would induce an earlier
response than less salient stimuli. While this model focuses on stimulus
saliency, the OPR considers a lower level dimension of the stimulus,
i.e., its intensity, and evaluates the probability of neural response to an
incoming input, as presented in a random time point along the alpha
phase. Therefore, the two proposals do not overlap and should be
considered mutually exclusive; instead, they may be integrated to im-
prove our understanding of the relationship between alpha oscillations,
gamma activity, and visual perception.

Another theoretical strand has recently emphasized that alpha ac-
tivity may be more closely related to a bias in the response and to
variability in aspects of conscious perception, rather than to perceptual
sensitivity. Specifically, lower levels of alpha activity have been asso-
ciated with higher probabilities of positive responses, including in the
absence of the stimulus, producing false alarms (Benwell et al., 2017;
Iemi et al., 2017; Limbach and Corballis, 2016; Ruhnau et al., 2014).
Conversely, in the OPR, the perceptual outcome is accounted for by
neural activity in primary sensory areas and not by subsequent, higher-
order processes. We postulate that the intriguing findings reported by
Van Vugt and coworkers (2018) facilitate a reconciliation of the ap-
parent inconsistencies between these recent interpretations and the
OPR. First, the authors revealed that variability in the neural response
to near-threshold stimuli is also present in the very first stages of the
visual stream, with higher neural activity observed for hits than misses
in V1. Moreover, the same study (van Vugt et al., 2018) also reported
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that false alarms are associated to neural activity in higher-order areas
in the visual pathway, such as the dorso-lateral prefrontal cortex, sug-
gesting that variability in perceptual outcome may also be due to
subsequent processes in the visual stream. Notably, the false alarm rate
in visual detection tasks has also been reported to be very low in studies
on the effects of alpha activity on visual perception (∼1.8 %; Busch and
Van Rullen, 2010). Overall, decision bias is not likely to explain all of
the effects of prestimulus alpha oscillations on perceptual outcome, and
further studies are needed to provide insights into this issue. Currently,
we propose that the OPR and theories that associate alpha activity with
response bias should not be considered as alternatives, as alpha oscil-
lations may affect perceptual outcome in several ways.

4. Conclusions

In summary, the hypothesis that the M/EEG signal in general, and
neural oscillations in particular, may be related to more than a single
mechanism has been already proposed (Cohen, 2017; Musall et al.,
2014; Zoefel and VanRullen, 2017). However, the study of the re-
lationship between macro- and meso-scale mechanisms, and particu-
larly the link with behaviour, is still underinvestigated. While the OPR
arises from the existing literature examining the effects of alpha oscil-
lations on visual perception, it may also encourage a fruitful discussion
about the relationship between neural activity across different scales,
i.e., meso- and macro-scales, and behaviour by combining efforts from
several methodological and theoretical perspectives.
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